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The worldline formalism shares with string theory the property that it allows one to

write down master integrals that e�ectively combine the contributions of many Feynman

diagrams. While at the one-loop level these diagrams di�er only by the position of the

external legs along a �xed line or loop, at multiloop they generally involve di�erent topolo-

gies. Here we summarize various e�orts that have been made over the years to exploit

this property in a computationally meaningful way. As a �rst example, we show how

to generalize the Landau-Khalatnikov-Fradkin formula for the non-perturbative gauge

transformation of the fermion propagator in QED to the general 2n - point case by pure

manipulations at the path-integral level. At the parameter-integral level, we show how to

integrate out individual photons in the low-energy expansion, and then sketch a recently

introduced general framework for the analytical evaluation of such worldline integrals in-

volving a reduction to quantum mechanics on the circle and the relation between inverse

derivatives and Bernoulli polynomials.
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Summing Feynman diagrams in the worldline formalism C. Schubert

1. QED in the worldline representation

1.1 Worldline representation of dressed scalar propagator

Let us start with Feynman's 1950 worldline path integral representation [1] of the

Green's function for the interacting Klein-Gordon operator −(∂ + ieA)2 +m2,

Dxx′ [A] = 〈x′|
∫ ∞

0
dT exp

[
−T (−(∂ + ieA)2 +m2)

]
|x〉

=

∫ ∞

0
dT e−m

2T

∫ x(T )=x

x(0)=x′
Dx(τ) e−

∫ T
0 dτ

(
1
4
ẋ2+ieẋ·A(x(τ))

)
. (1)

Choosing the background �eld as N plane waves, Aµ(x(τ)) =
∑N

i=1 ε
µ
i eiki·x(τ) , and Fourier

transforming the endpoints, we get a representation of the �photon-dressed propagator�

shown in Fig. 1.

8

Substituting this vertex operator in Eq. (??), and applying the split in Eq. (??), one gets

Γ[x, x�; k1, ε1; · · · ; kN , εN ] = (−ie)N

� ∞

0

dT e−m2T e−
1

4T (x−x�)2
�

q(0)=q(T )=0

Dq(τ) e−
1
4

� T
0

dτ q̇2

×
� T

0

N�

i=1

dτi e
�N

i=1

�
εi· (x−x�)

T +εi·q̇(τi)+iki·(x−x�) τi
T +iki·x�+iki·q(τi)

����
lin(ε1ε2···εN )

.

(4.3)

After completing the square in the exponential, we obtain the following tree-level “Bern-Kosower-type formula” in
configuration space:

Γ[x, x�; k1, ε1; · · · ; kN , εN ] = (−ie)N

� ∞

0

dT e−m2T e−
1

4T (x−x�)2
�
4πT

�−D
2

×
� T

0

N�

i=1

dτi e
�N

i=1

�
εi· (x−x�)

T +iki·(x−x�) τi
T +iki·x�

�
e
�N

i,j=1

�
∆ijki·kj−2i•∆ijεi·kj−•∆•

ijεi·εj

����
lin(ε1ε2···εN )

.

(4.4)

Now, we also Fourier transform the scalar legs of the master formula in Eq. (??) to momentum space,

Γ[p; p�; k1, ε1; · · · ; kN , εN ] =

�
dDx

�
dDx� eip·x+ip�·x�

Γ[x, x�; k1, ε1; · · · ; kN , εN ] . (4.5)

This gives a representation of the multi-photon Compton scattering diagram as depicted in FIG. ?? (together with
all the permuted and “seagulled” ones).
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p

k1 k2 k3

· · ·
kN

··· p�

FIG. 2: Multiphoton diagram in momentum space.

Changing the integral variables to

x − x� = x− and x + x� = 2x+ ,

the integral over x+ just produces the usual energy-momentum conservation factor:

Γ[p; p�; k1, ε1; · · · ; kN , εN ] = (−ie)N (2π)DδD
�
p + p� +

�

i

ki

��
dDx−

� ∞

0

dT e−m2T e−
1

4T x2
−(4πT )−

D
2

×
� T

0

�

i

dτi eix−·(p+
�

i
kiτi

T )e
�

i

εi·x−
T e

�N
i,j=1

�
∆ijki·kj−2i•∆ijεi·kj−•∆•

ijεi·εj

����
lin(ε1ε2···εN )

. (4.6)

After performing also the x− integral, and some rearrangements, one arrives at

Γ[p; p�; k1, ε1; · · · ; kN , εN ] = (−ie)N (2π)DδD
�
p + p� +

�

i

ki

�� ∞

0

dT e−T (m2+p2)

×
� T

0

N�

i=1

dτi e
�N

i=1(−2ki·pτi+2iεi·p)+
�N

i,j=1

�
(

|τi−τj |
2 − τi+τj

2 )ki·kj−i(sign(τi−τj)−1)εi·kj+δ(τi−τj)εi·εj

����
lin(ε1ε2···εN )

.

(4.7)

This is our final representation of the N - propagator in momentum space. On-shell it corresponds to multi-photon
Compton scattering, while off-shell it can be used for constructing higher-loop amplitudes by sewing. Since this
momentum space version involves the integration variables only linearly in the exponent, for any given ordering of
the photon legs it is straightforward to do the integrals and verify, that they correspond to the usual sum of Feynman
diagrams. The main point of the formula (4.7) is its ability to combine all the N ! orderings. This may not appear very
relevant at tree level, but when used as a building block for higher-loop amplitudes leads to integral representations
for nontrivial sums of diagrams. For example, taking two copies of the N - propagator, pairing off the photons on
each side, and connecting them by free photon propagators, we can construct an integral representation of the sum
of ladder plus crossed-ladder diagrams, important for the study of scalar bound states in Scalar QED. For the case of
scalar field theory this construction was already carried out in [? ], and the resulting integral representation used to
first asymptotically sum over N and then apply a saddle-point approximation for obtaining the lowest bound state
mass in the ladder plus crossed-ladder approximation.

FIG. 3: Multi-photon Compton-scattering diagram.
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x − x� = x− and x + x� = 2x+ ,

the integral over x+ just produces the usual energy-momentum conservation factor:

Γ[p; p�; k1, ε1; · · · ; kN , εN ] = (−ie)N (2π)DδD
�
p + p� +

N�

i=1

ki

�� ∞

0

dT e−m2T (4πT )−
D
2

�
dDx− e−

1
4T x2

−

×
� T

0

N�

i=1

dτi eix−·
�
p+

�N
i=1

kiτi
T

�
e
�N

i=1

εi·x−
T e

�N
i,j=1

�
∆ijki·kj−2i•∆ijεi·kj−•∆•

ijεi·εj

����
lin(ε1ε2···εN )

.

(4.6)

After performing also the x− integral, and some rearrangements, one arrives at

Γ[p; p�; k1, ε1; · · · ; kN , εN ] = (−ie)N (2π)DδD
�
p + p� +

N�

i=1

ki

�� ∞

0

dT e−T (m2+p2)

×
� T

0

N�

i=1

dτi e
�N

i=1(−2ki·pτi+2iεi·p)+
�N

i,j=1

�
(

|τi−τj |
2 − τi+τj

2 )ki·kj−i(sign(τi−τj)−1)εi·kj+δ(τi−τj)εi·εj

����
lin(ε1ε2···εN )

.

(4.7)

Figure 1: The photon-dressed scalar propagator.

Note that the worldline representation provides the complete amplitude in one piece:

di�erently from the Feynman diagrammatic approach, there is neither a need to sum over

�crossed� diagrams, nor to distinguish between the linear and the �seagull� vertex couplings

of the scalar particle to the Maxwell �eld.

1.2 Worldline representation of scalar QED e�ective action

Similarly, the one-loop e�ective action can be presented in terms of a path integral over

all closed loops in spacetime:

Γ[A] =

∫ ∞

0

dT

T
Tr exp

[
−T (−(∂ + ieA)2 +m2)

]

=

∫ ∞

0

dT

T
e−m

2T

∫

x(0)=x(T )
Dx(τ) e−

∫ T
0 dτ

(
1
4
ẋ2+ieẋ·A(x(τ))

)
. (2)

Expanding the �eld in N plane waves, one gets the full scalar QED one-loop N -photon

amplitudes.

1.3 Worldline representation of spinor QED e�ective action

At the level of the N -photon amplitudes, the transition from scalar to spinor QED can

(up to the normalization) simply be made by inserting, under the path integral (2), the

�Feynman spin factor� Spin[x,A],

Spin[x,A] = trΓP exp

[
i

4
e [γµ, γν ]

∫ T

0
dτFµν(x(τ))

]
. (3)

2
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However, its use implies path ordering, forcing one to �x the ordering of the photons. For

the purposes that I am going to discuss here, it will be essential to avoid this. Following

Fradkin [2], this can be done replacing the spin factor by a Grassmann path integral,

Spin[x,A]→
∫
Dψ(τ) exp

[
−
∫ T

0
dτ

(
1

2
ψ · ψ̇ − ieψµFµνψν

)]
(4)

where the Lorentz vectors ψµ(τ) are anticommuting and antiperiodic functions of proper

time: ψ(τ1)ψ(τ2) = −ψ(τ2)ψ(τ1), ψ(T ) = −ψ(0). The main point of the Grassmann

approach is to replace the path-ordered exponential by an ordinary exponential.

1.4 Worldline representation of dressed electron propagator

For the dressed fermion propagator, too, worldline reprentations have been around

for decades [2�5]. However, only during the last few years a version has been developed

that seems suitable for higher-order state-of-the-art calculations [6, 7]. The starting point

is the second-order representation of the x-space Dirac propagator Sxx
′
[A] in a Maxwell

background:

Sxx
′
[A] =

[
m+ iD/

′]
Kxx′ [A]

Kxx′ [A] =
〈
x′
∣∣∣
[
m2 −DµD

µ +
i

2
eγµγνFµν

]−1∣∣∣x
〉

=

∫ ∞

0
dT e−m

2T e−
1
4

(x−x′)2
T

∫ q(T )=0

q(0)=0
Dq e−

∫ T
0 dτ

(
1
4
q̇2+ie q̇·A+iex

′−x
T
·A
)

× 2−
D
2 symb−1

∫

ψ(0)+ψ(T )=0
Dψ e−

∫ T
0 dτ

[
1
2
ψµψ̇µ−ieFµν(ψ+η)µ(ψ+η)ν

]
. (5)

Here ηµ is an external Grassmann Lorentz vector, and the �symbol map� symb converts

products of ηs into fully antisymmetrised products of Dirac matrices:

symb
(
γα1α2···αn) ≡ (−i

√
2)nηα1ηα2 . . . ηαn (6)

where γαβ···ρ denotes the totally antisymmetrised product of gamma matrices:

γα1α2···αn ≡ 1

n!

∑

π∈Sn

sign(π)γαπ(1)γαπ(2) · · · γαπ(n) . (7)

1.5 Higher order QED processes

Since all the above formulas are valid o�-shell, arbitrary QED processes can be con-

structed from these building blocks by sewing (Fig. 2).

Although the worldline representation is equivalent to Feynman diagrams, it is more

global in the sense that it does not distinguish between diagrams di�ering only by the

ordering of the photon legs along a line or loop.

3
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Figure 2: A typical multiloop process in QED.

2. Generalization of the Landau-Khalatnikov-Fradkin transformation

For some purposes, this property becomes useful already at the path-integral level. In

1956, Landau and Khalatnikov [8] and independently Fradkin [9] showed, that the non-

perturbative behaviour of the electron propagator S(x; ξ) under a change ξ → ξ̂ of the

covariant gauge parameter ξ can be written as (in exactly four dimensions)

S(x; ξ) = S(x; ξ̂)

[
x2

x2
0

]− α
4π

(ξ−ξ̂)
(8)

where x0 is an IR cuto�. Very recently, we have used the worldline formalism to extend

this result to the general fermionic 2n-point correlator

A(x1, . . . , xn;x′1, . . . , x
′
n|ξ) ≡ 〈ψ(x1) · · ·ψ(xn)ψ̄(x′1) · · · ψ̄(x′n)〉 (9)

as follows [10]:

A(x1, . . . , xn;x′1, . . . , x
′
n|ξ̂) =

n∏

k,l=1

e(ξ̂−ξ)S(k,l)A(x1, . . . , xn;x′1, . . . , x
′
n|ξ) , (10)

S(k,l) =
e2

32π
D
2

Γ
(D

2
−2
){[(

xk−xl
)2]2−D

2 −
[ (
xk − x′l

)2 ]2−D
2 −

[ (
x′k−xl

)2 ]2−D
2

+
[ (
x′k − x′l

)2 ]2−D
2

}
. (11)

Here the sum k, l runs over all pairs of open fermion lines, and the exponential factor for

�xed k and l implements the e�ect of the change of the covariant gauge parameter for

photons inserted between them in all possible ways (for photons that on one or both ends

hit a closed loop there is no e�ect). Note also that the dimension has been left general.

3. String-inspired treatment of the worldline path integral

Under the in�uence of string theory, in the nineties a perturbative approach to the

evaluation of worldline path integrals using worldline Green's functions was developed [11,

12]. E.g. for the closed-loop case one has the basic correlators

〈xµ(τ1)xν(τ2)〉 = −G(τ1, τ2) δµν , G(τ1, τ2) = |τ1 − τ2| −
1

T

(
τ1 − τ2

)2
, (12)

〈ψµ(τ1)ψν(τ2)〉 = GF (τ1, τ2) δµν , GF (τ1, τ2) = sign(τ1 − τ2) . (13)

4
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This allows one to derive compact master formulas for the photon-dressed propagators and

the one-loop N -photon amplitudes in scalar and spinor QED, as well as for many other

types of amplitudes (for reviews, see [13, 14]).

3.1 Master formula for the N-photon amplitudes in scalar and spinor QED

The in many ways prototypical one of these master formulas is the one for the one-loop

N -photon amplitudes in scalar QED:

Γ[{ki, εi}] = (−ie)N
∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2T
N∏

i=1

∫ T

0
dτi

× exp

{ N∑

i,j=1

[1
2
Gijki · kj + iĠijki · εj +

1

2
G̈ijεi · εj

]}
|lin(ε1,...,εN ) . (14)

Here T is the loop proper-time and τi parametrizes the position of photon i along the loop.

A projection on the terms linear in each of the polarization vectors ε1, . . . , εN is understood.

Besides the Green's function Gij ≡ G(τi, τj) also its �rst and second derivatives appear,

Ġ(τ1, τ2) = sign(τ1 − τ2)− 2
(τ1 − τ2)

T
, (15)

G̈(τ1, τ2) = 2δ(τ1 − τ2)− 2

T
. (16)

A similar master formula can be written down for the spinor loop using worldline super-

symmetry.. However, in practice it is usually preferable to use an integration-by-parts that

removes all the G̈ij , and the following �Bern-Kosower replacement rule� [11]:

Ġi1i2Ġi2i3 · · · Ġini1 → Ġi1i2Ġi2i3 · · · Ġini1 −GFi1i2GFi2i3 · · ·GFini1 . (17)

3.2 The four-photon amplitudes

Let us write down the resulting representation for the familiar four-photon amplitude,

usually given in terms of the six Feynman diagrams displayed in Fig. 3.

1 2

34

+

1 2

43

+

1 3

24

+

1 3

42

+

1 4

23

+

1 4

32

Figure 3: Six Feynman diagrams for photon-photon scattering.

After a large number of integrations by parts, one �nds the following tensor decompo-

sition [15] (still o�-shell):

Γ̂ = Γ̂(1) + Γ̂(2) + Γ̂(3) + Γ̂(4) + Γ̂(5) , (18)

5
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Γ̂(1) = Γ̂
(1)
(1234)T

(1)
(1234) + Γ̂

(1)
(1243)T

(1)
(1243) + Γ̂

(1)
(1324)T

(1)
(1324) ,

Γ̂(2) = Γ̂
(2)
(12)(34)T

(2)
(12)(34) + Γ̂

(2)
(13)(24)T

(2)
(13)(24) + Γ̂

(2)
(14)(23)T

(2)
(14)(23) ,

Γ̂(3) =
∑

i=1,2,3

Γ̂
(3)
(123)iT

(3)r4
(123)i +

∑

i=2,3,4

Γ̂
(3)
(234)iT

(3)r1
(234)i +

∑

i=3,4,1

Γ̂
(3)
(341)iT

(3)r2
(341)i +

∑

i=4,1,2

Γ̂
(3)
(412)iT

(3)r3
(412)i ,

Γ̂(4) =
∑

i<j

Γ̂
(4)
(ij)iiT

(4)
(ij)ii +

∑

i<j

Γ̂
(4)
(ij)jjT

(4)
(ij)jj ,

Γ̂(5) =
∑

i<j

Γ̂
(5)
(ij)ijT

(5)
(ij)ij +

∑

i<j

Γ̂
(5)
(ij)jiT

(5)
(ij)ji .

Remarkably, the basis of �ve tensors T (i) is identical with the one found in 1971 by Costan-

tini, De Tollis and Pistoni [16] using the QED Ward identity:

T
(1)
(1234) ≡ Z(1234) , (19)

T
(2)
(12)(34) ≡ Z(12)Z(34) , (20)

T
(3)r4
(123)i ≡ Z(123)

r4 · f4 · ki
r4 · k4

(i = 1, 2, 3) , (21)

T
(4)
(12)11 ≡ Z(12)

k1 · f3 · f4 · k1

k3 · k4
, (22)

T
(5)
(12)12 ≡ Z(12)

k1 · f3 · f4 · k2

k3 · k4
. (23)

Here we have further introduced

fµνi ≡ kµi ε
ν
i − εµi kνi , (24)

Z(ij) ≡ 1

2
tr
(
fifj

)
= εi · kjεj · ki − εi · εiki · kj , (25)

Z(i1i2 . . . in) ≡ tr
( n∏

j=1

fij

)
(n ≥ 3) . (26)

The corresponding parameter integrals are extremely compact:

Γ̂
(k)
··· =

∫ ∞

0

dT

T
T 4−D

2 e−m
2T

∫ 1

0

4∏

i=1

dui γ̂
(k)
... (Ġij) eT

∑4
i<j=1Gijki·kj (27)

where, for spinor QED,

γ̂
(1)
(1234) = Ġ12Ġ23Ġ34Ġ41 −GF12GF23GF34GF41 , (28)

γ̂
(2)
(12)(34) =

(
Ġ12Ġ21 −GF12GF21

)(
Ġ34Ġ43 −GF34GF43

)
, (29)

γ̂
(3)
(123)i =

(
Ġ12Ġ23Ġ31 −GF12GF23GF31

)
Ġ4i , (30)

γ̂
(4)
(12)11 =

(
Ġ12Ġ21 −GF12GF21

)
Ġ13Ġ41 , (31)

γ̂
(5)
(12)12 =

(
Ġ12Ġ21 −GF12GF21

)
Ġ13Ġ42 (32)

(plus permutations thereof), and the coe�cient functions for scalar QED are obtained from

these simply by deleting all the GFij .

6
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3.3 Master formula for the N-photon dressed scalar propagator

A master formula for the scalar propagator dressed with N photons was obtained by

Daikouji et al. in 1996 [17]:

Dpp′(k1, ε1; · · · ; kN , εN ) = (−ie)N
∫ ∞

0
dT e−m

2T

×
N∏

i=1

∫ T

0
dτi e−Tb

2+
∑N
i,j=1[∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj ]

∣∣∣
ε1ε2···εN

.

(33)

Here we have introduced the vector b ≡ p′ + 1
T

∑N
i=1(kiτi − iεi) and a di�erent worldline

Green's function ∆(τ, τ ′),

〈qµ(τ)qν(τ ′)〉 = −2∆(τ, τ ′)δµν , ∆(τ, τ ′) =
|τ − τ ′|

2
− τ + τ ′

2
+
ττ ′

T
. (34)

3.4 Master formula for the photon-dressed electron propagator

To the contrary, a master formula for the photon-dressed electron propagator was

obtained only very recently [6, 7]:

Kpp′
N (k1, ε1; . . . ; kN , εN ) = (−ie)N symb−1

∫ ∞

0
dT e−m

2T

∫ T

0
dτ1 · · ·

∫
dθN

× e−
√

2η·
∑N
i=1(εi+iθki)+

∑N+1
i,j=0

[
ĝijki·kj+2iDîgijεi·kj+DiDjĝijεi·εj

]∣∣∣
ε1···εN

. (35)

This now involves Grassmann variables θ1, . . . , θN , the super derivative D = ∂
∂θ − θ ∂

∂τ

and the super worldline Green's function ĝ(τ, θ; τ ′, θ′) = 1
2(|τ − τ ′|+ θθ′sign(τ − τ ′)). The

main advantages of this approach are that (i) the use of the symbol map leads to an early

projection on the Cli�ord basis, e�ectively avoiding the appearance of long Dirac traces

(ii) the spin-averaging can be done without �xing the number or helicity assignments of

the photons. As a check, in [7] the formalism was used to recalculate the (polarized and

unpolarized) Compton scattering amplitude, and complete agreement was found with [18].

3.5 On to multiloop

Dealing with the amplitude as a whole becomes important when one uses the one-loop

amplitudes to construct higher-loop amplitudes by sewing. For example, from the one-loop

six-photon amplitude we can construct the three-loop quenched propagator (Fig. 4) etc.

+ + +   ...

Figure 4: The quenched three-loop photon propagator.

This type of sums of diagrams is known to su�er from extensive cancellations.
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4. The fundamental problem of worldline integration

Returning to the one-loop level, considering that GFijs can always be eliminated by

GFijGFjkGFki = −(Ġij + Ġjk + Ġki) (36)

the most general integral that one will ever have to compute in the worldline approach to

QED (or any abelian theory) is of the form

∫ 1

0
du1du2 · · · duN Pol(Ġij) e

∑N
i<j=1Gijki·kj (37)

with arbitrary N and polynomial Pol(Ġij). Here we have rescaled τi = Tui, so that now

Gij = |ui − uj | − (ui − uj)2, Ġij = sign(ui − uj)− 2(ui − uj) . (38)

Ideally, we would like to compute this integral without decomposing the integrand into

ordered sectors. This leads to a very non-standard integration problem. An easily solvable

special case are �cycle integrals�:

bn ≡
∫ 1

0
du1du2 . . . dun Ġ12Ġ23 · · · Ġn1 =

{
−2nBnn! n even

0 n odd
(39)

where Bn denotes the nth Bernoulli number, and �super cycle integrals�,

bn − fn ≡
∫ 1

0
du1du2 . . . dun

(
ĠB12ĠB23 · · · ĠBn1 −GF12GF23 · · ·GFn1

)
= (2− 2n) bn .

(40)

In the worldline formalism, those are all that is needed to calculate the one-loop N -photon

amplitudes in the low-energy approximation [19].

General polynomial integrals can be done recursively by the application of the following

formula [20]

∫ 1

0
du Ġ(u, u1)k1Ġ(u, u2)k2 · · · Ġ(u, un)kn =

1

2n

n∑

i=1

∏

j 6=i

kj∑

lj=0

(
kj
lj

)
Ġ
kj−lj
ij

ki∑

li=0

(
ki
li

)

× (−1)
∑n
j=1 lj

(1 +
∑n

j=1 lj)n
∑n
j=1 lj

{(∑

j 6=i
Ġij + 1

)1+
∑n
j=1 lj − (−1)ki−li

(∑

j 6=i
Ġij − 1

)1+
∑n
j=1 lj

}
.

(41)

This can be used, for example, to integrate out a low-energy photon in a multiphoton

amplitude without �xing the order of the remaining photons. In a forthcoming publication

[21] this is applied to the four-photon amplitude, creating a building block for higher-loop

calculations that will make it possible, for example, to unify the calculation of the various

3-loop g-2 contributions shown in Fig. 5 and the calculation of the 4-loop β-function

contributions shown in Fig. 6.
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Figure 5: LBL contributions to the three-loop g − 2.

Figure 6: LBL contributions to the four-loop β function. The external photons are at low-energy.

5. Inverse derivative expansion

Much more di�cult is the inclusion of the universal factors eGijki·kj . The following

strategy was proposed in [20]: the worldline path integral is performed in the Hilbert space

H ′P of periodic functions orthogonal to the constant functions (because the zero mode must

be �xed). In this space the ordinary nth derivative ∂P is invertible, and the integral kernel

of the inverse is given essentially by the nth Bernoulli polynomial Bn(x) [22, 23]:

< u1 | ∂−nP | un+1 > = − 1

n!
Bn(|u1 − un+1|)signn(u1 − un+1) (n ≥ 1) , (42)

〈ui|∂0|uj〉 = δ(ui − uj)− 1 . (43)

Thus worldline integration naturally relates to the theory of Bernoulli numbers and poly-

nomials. Further, in [20] it was shown how to expand the universal exponential factor in

terms of the matrix elements of the inverse derivatives:

eGijki·kj = 1 + 2

∞∑

n=1

(ki · kj)n−1/2H2n−1

(√
ki · kj
2

)
(〈ui|∂−2n |uj〉 − 〈ui|∂−2n |ui〉) (44)

where the Hn(x) are Hermite polynomials. Let us show how to use this expansion for

the simplest case of the N -point function in φ3 theory, where the master formula simply

becomes (kij ≡ ki · kj)

ÎN (k1, . . . , kN ) =

∫ ∞

0

dT

T
TN−D/2e−m

2T

∫ 1

0
du1...duN exp


T

N∑

i<j=1

Gijkij


 . (45)
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In the three-point case one can use this to write (B̂n ≡ Bn
n! )

ek12G12+k13G13+k23G23 =

{
1 + 2

∞∑

i=1

k
i− 1

2
12 H2i−1

(√
k12

2

)[
〈u1|∂−2i|u2〉+ B̂2i

]}

×



1 + 2

∞∑

j=1

k
j− 1

2
13 H2j−1

(√
k13

2

)[
〈u1|∂−2j |u3〉+ B̂2j

]




×
{

1 + 2
∞∑

k=1

k
k− 1

2
23 H2k−1

(√
k23

2

)[
〈u2|∂−2k|u3〉+ B̂2k

]}
.

(46)

Since
∫ 1

0 dui,j〈ui|∂−2i|uj〉 = 0, the three 〈ui|∂−2n|uj〉 can produce a non-vanishing integral

only together, and then by
∫ 1

0 du|u〉〈u| = 1l,
∫

123
〈u1|∂−2i|u2〉〈u2|∂−2k|u3〉〈u3|∂−2j |u1〉 = Tr(∂−2(i+j+k)) = −B̂2(i+j+k) . (47)

In this way we get a closed form-expression for the N = 3 momentum expansion coe�cients,

I3(a, b, c) ≡
∫

123
Ga12G

b
13G

c
23 = a!b!c!

a∑

i=b1+a/2c

b∑

j=b1+b/2c

c∑

k=b1+c/2c

hai h
b
jh
c
k

×
(
B̂2iB̂2jB̂2k − B̂2(i+j+k)

)
. (48)

Here we have assumed that a, b, c are all di�erent from zero, and the coe�cients hai are

(from the explicit formula for the Hermite polynomials)

hai = (−1)a+1 2(2i− 1)!

(2i− a− 1)!(2a− 2i+ 1)!
. (49)

At the four-point level, we encounter more general integrals involving the �cubic worldline

vertex�

V ijk
3 ≡

∫ 1

0
du〈u|∂−i|u1〉〈u|∂−j |u2〉〈u|∂−k|u3〉 (50)

but they can be reduced to chain integrals by a systematic IBP procedure. This remains

true at higher points.

6. Summary and Outlook

1. In the worldline formalism, we can integrate out photons in the low-energy limit,

or to any �nite order in the external momentum, without �xing the ordering of the

remaining legs.

2. At full momentum, we can use the inverse derivative expansion, and try a resum-

mation. For this purpose, eventually we will need formulas relating the Bernoulli

numbers to hypergeometric functions.

3. This provides also a powerful new approach to the calculation of the φ3 and QED

heat-kernel expansions.
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