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1. Introduction

In this talk we present the colourful antenna subtraction formalism for gluonic processes, which
is described in detail in [1].

The NNLO antenna subtraction method [2, 3] is based up to now on the identification of
single and double real radiation patterns in colour-ordered subprocess contributions and has been
applied successfully in computing NNLO corrections to a variety of hadron-collider processes [4–
13]. However, the efficiency of the present formulation scales poorly with the number of external
partons and its application to processes involving four or more external partons is extremely
challenging. One reason for this is the proliferation of infrared limits in real emission corrections
for high-multiplicity processes. Moreover, in the context of antenna subtraction, the treatment of
contributions beyond the leading colour approximation is highly non-trivial, due to the appearance
at the matrix element level of incoherent interferences between different colour orderings, which
cannot be straightforwardly addressed with the traditional technique. The structure of subleading-
colour contributions becomes more involved at high multiplicities and thus represents a major
obstacle. Because of these issues, the extension of antenna subtraction to new applications has
required a significant amount of process-dependent work in the past years.

It is the objective of the colourful antenna subtraction method to overcome these limitations
and to achieve a more general and process-independent formulation of the antenna subtraction.
The primary goals are the definition of a systematic procedure for the generation of the entire
subtraction infrastructure at NNLO and the more efficient treatment of colour correlations within
matrix elements to directly retain the full Nc-dependence.

The main idea behind the new approach consists in relying on the predictability of the singu-
larity structure of one- and two-loop amplitudes in colour space to automatically generate virtual
subtraction terms, which cancel the explicit poles of virtual corrections. Subsequently, the one-
to-one correspondence between antenna functions and their integrated counterparts is exploited to
systematically infer real subtraction terms which can be used to remove the divergent behaviour of
real emission corrections in the infrared limits. The colourful antenna subtraction method at NLO
and NNLO is briefly described in the following.

2. Colourful antenna subtraction at NLO

The NLO QCD correction to an n-jet partonic cross section with parton species a and b in the
initial state is given by [3]:

dσ̂ab,NLO =

∫
n

(
dσ̂V

ab,NLO + dσ̂MF
ab,NLO

)
+

∫
n+1

dσ̂R
ab,NLO, (1)

where the symbol
∫
n indicates an integration over then final state particles. dσ̂V

ab,NLO and dσ̂R
ab,NLO

respectively represent the virtual and real corrections, while dσ̂MF
ab,NLO is the NLO mass factorization

counterterm. Due to the emergence of infrared divergences in both the virtual and real corrections,
a subtraction procedure is needed to numerically evaluate (1). In the context of antenna subtraction,
this is achieved constructing a real subtraction term dσ̂S

ab,NLO [3], which locally removes the
singular behaviour of dσ̂R

ab,NLO in the IR limits and can be analytically integrated over the phase
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space of the unresolved radiation. This latter feature is required to obtain from dσ̂S
ab,NLO the virtual

subtraction term dσ̂T
ab,NLO, which cancels the explicit poles of the virtual correction and contains

the mass factorization contribution. The NLO cross section can then be reformulated as [3]:

dσ̂ab,NLO =

∫
n

[
dσ̂V

ab,NLO − dσ̂T
ab,NLO

]
+

∫
n+1

[
dσ̂R

ab,NLO − dσ̂S
ab,NLO

]
, (2)

with
dσ̂T

ab,NLO = −
∫
1

dσ̂S
ab,NLO − dσ̂MF

ab,NLO. (3)

In the following we give an overview of how the virtual and the real subtraction terms are
constructed in the colourful antenna subtraction approach, mainly to introduce important concepts,
which will be crucial for its application at NNLO.

The singularity structure of renormalized (n+ 2)-parton one-loop amplitudes in QCD can be
described in colour space with [14]:

|A1
n+2⟩ = I(1)

(
ϵ, µ2

r

)
|A0

n+2⟩+ |A1,fin
n+2(µ

2
r)⟩ , (4)

where µr is the renormalization scale, |A1,fin
n+2(µ

2
r)⟩ is a finite remainder and I(1)

(
ϵ, µ2

r

)
is Catani’s

IR insertion operator [14], which can be rewritten as

I(1)
(
ϵ, µ2

r

)
=

∑
(i,j)

(Ti · Tj) I(1)
ij

(
ϵ, µ2

r

)
, (5)

where in the last line the sum runs over pairs of partons. For the gluons-only case that is considered
in this talk, we only need the expression of I(1)

igjg

(
ϵ, µ2

r

)
at Nf = 0:

I(1)
igjg

(
ϵ, µ2

r

)
=

eϵγE

Γ(1− ϵ)

[
1

ϵ2
+

b0
ϵ

](
−sij
µ2
r

)−ϵ

, b0 =
11

6
. (6)

Using (5) it is possible to write down the IR singularity structure of the virtual correction in
the following general way:

Poles
(
σ̂V
gg,NLO

)
= N V

NLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J

(n)
n ({p}n)

×Poles

 ∑
(ig ,jg)

⟨A0
n+2|Tig · Tjg |A0

n+2⟩ 2Re
(
I(1)
igjg

(
ϵ, µ2

r

)) , (7)

where the factorN V
NLO is an appropriate overall normalization. In the colourful antenna subtraction

approach, we exploit the previous result to directly construct the NLO virtual subtraction term. To
do so, we define a NLO singularity dipole operator in colour space for an (n+ 2)-parton process:

J (1)(ϵ) =
∑

(i,j)≥3

(Ti · Tj)J (1)
2 (ig, jg) +

∑
i ̸=1,2

(T1 · Ti)J (1)
2 (1g, ig)

+
∑
i ̸=1,2

(T2 · Ti)J (1)
2 (2g, ig) + (T1 · T2)J (1)

2 (1g, 2g) . (8)
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The first sum in the previous formula runs over all pairs of gluons in the final state, the second and the
third sums include all pairs with an initial-state gluon (respectively 1g and 2g) and a final-state one
and the last term addresses the configuration where both gluons are in the initial state. The scalar
functions J (1)

2 (i, j) are colour stripped one-loop integrated dipoles [3, 15], given by a combination
of integrated three-parton tree-level antenna functions and NLO mass factorization kernels. The
explicit expressions of the gluon-gluon integrated dipoles for final-final (FF), initial-final (IF) and
initial-initial (II) configurations are the following:

J (1)
2 (ig, jg) =

1

3
F0
3 (sij),

J (1)
2 (1g, jg) =

1

2
F0
3,g(s1j)−

1

2
Γ(1)
gg (x1) ,

J (1)
2 (1g, 2g) = F0

3,gg(s12)−
1

2
Γ(1)
gg (x1) δ2 −

1

2
Γ(1)
gg (x2) δ1, (9)

where δi = δ(1 − xi). The functions F0
3 , F0

3,g and F0
3,gg are gluon-gluon three-parton integrated

antenna functions [2, 16]. The integrated dipoles in (9) incorporate the mass factorization countert-
erm, as indicated by the presence of the gluon-gluon splitting kernels Γ(1)

gg . The poles carried by the
mass factorization kernels cancel with poles in the integrated initial-final and initial-initial antenna
functions associated with initial-state collinear divergences. The remaining ϵ-poles exactly match
the ones of the virtual matrix element, once the operator in (8) is evaluated on the corresponding
Born-level amplitude in colour space. In particular, at one loop the following relation holds:

Poles
[
J (1)
2 (ig, jg)

]
= Poles

[
Re

(
I(1)
igjg

(
ϵ, µ2

r

))]
. (10)

It is then possible to express the NLO virtual subtraction term as

dσ̂T
gg,NLO = N V

NLO

∫
dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J
(n)
n ({p}n)

×2 ⟨A0
n+2|J (1)(ϵ)|A0

n+2⟩ . (11)

We remark that (11) is a completely general result in the case of gluon scattering: it is valid for any
number of external legs and retains the full Nc dependence.

The real subtraction term at NLO is systematically obtained from (11) relying on the one-to-one
correspondence between integrated and unintegrated antenna functions:

X 0
3 (sij) ↔ X0

3 (i, k, j), (12)

where X 0
3 (sij) is the integrated antenna function obtained integrating the tree-level three-parton

antenna function X0
3 (i, k, j) over the phase space of the unresolved parton k. Due to this relation,

once the virtual subtraction term is obtained, the structure of the real subtraction term can be com-
pletely determined by inserting an unresolved gluon between each pair of hard radiators appearing
in the integrated dipoles. The procedure to obtain dσ̂S

NLO,gg from dσ̂T
NLO,gg can be formulated as

follows:

1. Removal of the splitting kernels from the integrated dipoles;
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2. Transition from integrated three-parton antenna functions to unintegrated ones:

FF: F0
3 (sij) → 3 f0

3 (i, k, j),

IF: F0
3,g(s1i) → 2 f0

3,g(1, k, i),

II: F0
3,gg(s12) → F 0

3,gg(1, k, 2),

(13)

3. Momenta relabeling within colour interferences and jet functions according to the accompa-
nying antenna function;

4. Sum over permutations of the n+ 3 momenta to cover all possible IR limits;

5. Dressing of the obtained expression with the appropriate phase space and overall coefficient
factor.

We introduce the following notation for the procedure that we have just described:

dσ̂S
gg,NLO = −Ins

[
dσ̂T

gg,NLO

]
, (14)

where the minus sign in (14) follows from (3).
We remark that the knowledge of the unintegrated antenna functions required for the construc-

tion of the real subtraction term is a crucial premise for the application of this method. Indeed, the
described unintegration procedure allows for a systematic assembly of such ingredients and not for
an actual direct generation of the structures required to remove the IR divergences of real emission
corrections.

3. Colourful antenna subtraction at NNLO

The NNLO QCD correction to an n-jet cross section is given by:

dσ̂ab,NNLO =

∫
n

(
dσ̂V V

ab,NNLO + dσ̂MF,2
ab,NNLO

)
+

∫
n+1

(
dσ̂RV

ab,NNLO + dσ̂MF,1
ab,NNLO

)
+

∫
n+2

dσ̂RR
ab,NNLO, (15)

where dσ̂V V
ab,NNLO represents the double virtual correction, dσ̂RV

ab,NNLO the real virtual correction
and dσ̂RR

ab,NNLO the double real correction. The mass factorization counterterm is split into two
terms associated with n- and (n+ 1)-particle final states

The singular behaviour of both the double real and real virtual corrections in the IR limits must
be subtracted and the explicit poles in the double virtual and real virtual matrix elements need to be
properly removed. To achieve this, the NNLO cross section is rewritten in the context of antenna
subtraction as [3]:

dσ̂ab,NNLO =

∫
n

[
dσ̂V V

ab,NNLO − dσ̂U
ab,NNLO

]
+

∫
n+1

[
dσ̂RV

ab,NNLO − dσ̂T
ab,NNLO

]
+

∫
n+2

[
dσ̂RR

ab,NNLO − dσ̂S
ab,NNLO

]
, (16)
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where the subtracted quantities are the double virtual, the real virtual and the double real subtraction
term. These contributions have the following form [3]:

dσ̂S
ab,NNLO = dσ̂S,1

ab,NNLO + dσ̂S,2
ab,NNLO ,

dσ̂T
ab,NNLO = dσ̂V S

ab,NNLO −
∫
1

dσ̂S,1
ab,NNLO − dσ̂MF,1

ab,NNLO ,

dσ̂U
ab,NNLO = −

∫
1

dσ̂V S
ab,NNLO −

∫
2

dσ̂S,2
ab,NNLO − dσ̂MF,2

ab,NNLO . (17)

Analogously to the NLO case, we first address the IR poles of the double virtual contribution.
The singularity structure of renormalized two-loop amplitudes in QCD is known [14] and can be
described in colour space by:

|A2
n+2⟩ = I(1)

(
ϵ, µ2

r

)
|A1

n+2⟩+ I(2)
(
ϵ, µ2

r

)
|A0

n+2⟩+ |A2,fin
n+2(µ

2
r)⟩ , (18)

where, as before, |A2,fin
n+2(µ

2
r)⟩ is a finite remainder. The two-loop Catani IR insertion operator [14]

can be written as:

I(2)
(
ϵ, µ2

r

)
= −β0

ϵ

∑
(i,j)

I(1)
ij

(
ϵ, µ2

r

)
Ti · Tj +

∑
(i,j)

I(2)
ij

(
ϵ, µ2

r

)
Ti · Tj

−1

2

∑
(i,j)

∑
(k,l)

I(1)
ij

(
ϵ, µ2

r

)
I(1)
kl

(
ϵ, µ2

r

)
(Ti · Tj)(Tk · Tl), (19)

where
I(2)
ij

(
ϵ, µ2

r

)
= e−ϵγE

Γ(1− 2ϵ)

Γ(1− ϵ)

(
β0
ϵ

+K

)
I(1)
ij

(
2ϵ, µ2

r

)
−H(2)

ij (ϵ) , (20)

with
β0 =

11

6
Nc, K =

(
67

18
− π2

6

)
Nc . (21)

The poles of the double virtual cross section for gluons-only processes are therefore given by:

Poles
(
σ̂V V
gg,NNLO

)
= N V V

NNLO

∫
dΦn+2(p3, . . . , pn+2; p1, p2) J

(n+2)
n+2 ({p}n)

× Poles
{ ∑

(ig ,jg)

2Re
[
I(1)
igjg

(
ϵ, µ2

r

)] [
⟨A1

n+2|Tig · Tjg |A0
n+2⟩+ ⟨A0

n+2|Tig · Tjg |A1
n+2⟩

]
−1

2

∑
(ig ,jg)

∑
(kg ,lg)

2Re
[
I(1)
igjg

(
ϵ, µ2

r

)]
2Re

[
I(1)
lgkg

(
ϵ, µ2

r

)]
⟨A0

n+2|(Tig · Tjg)(Tkg · Tlg)|A0
n+2⟩

−β0
ϵ

∑
(i,j)

2Re
[
I(1)
igjg

(
ϵ, µ2

r

)]
⟨A0

n+2|Tig · Tjg |A0
n+2⟩

+
∑
(i,j)

2Re
[
I(2)
igjg

(
ϵ, µ2

r

)]
⟨A0

n+2|Tig · Tjg |A0
n+2⟩

}
. (22)

In analogy with (8), we define a two-loop insertion operator in colour space:

J (2)(ϵ) = Nc

∑
(i,j)≥3

(Ti · Tj)J (2)
2 (ig, jg) +Nc

∑
i ̸=1,2

(T1 · Ti)J (2)
2 (1̂g, ig)

+Nc

∑
i ̸=1,2

(T2 · Ti)J (2)
2 (2̂g, ig) +Nc (T1 · T2)J (2)

2 (1̂g, 2̂g) . (23)
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The two-loop colour stripped integrated dipoles J (2)
2 have a more involved structure with respect

to their one-loop counterparts. The expressions of the gluon-gluon J (2)
2 are given by [3, 15]:

J (2)
2 (ig, jg) =

1

4
F0
4 +

1

3
F1
3 +

1

3

b0
ϵ

(
|sij |
µ2
r

)−ϵ

F0
3 − 1

9

[
F0
3 ⊗F0

3

]
,

J (2)
2 (1̂g, jg) =

1

2
F0
4,g +

1

2
F1
3,g +

1

2

b0
ϵ

(
|s1j |
µ2
r

)−ϵ

F0
3,g −

1

4

[
F0
3,g ⊗F0

3,g

]
− 1

2
Γ
(2)
gg (x1) δ2,

J (2)
2 (1̂g, 2̂g) = F0,adj

4,gg +
1

2
F0,n.adj
4,gg + F1

3,gg +
b0
ϵ

(
|s12|
µ2
r

)−ϵ

F0
3,gg −

[
F0
3,gg ⊗F0

3,gg

]
−1

2
Γ
(2)
gg (x1) δ2 −

1

2
Γ
(2)
gg (x2) δ1, (24)

where we omitted the dependence on the scale sij in the integrated antennae. At NNLO, as
expected, we see the appearance of integrated four-parton antennae (F0

4 , F0
4,g, F

0,adj
4,gg , F0,n.adj

4,gg ),
integrated three-parton one-loop antennae (F1

3 , F1
3,g, F1

3,gg) and a convolution of two three-parton
integrated antennae, as well as two-loop mass factorization kernels for initial-final and initial-initial
configurations. In analogy with (10), we can relate the pole structure of (24) to the insertion
operators in (19):

Poles

[
Nc J (2)

2 (ig, jg)−
β0
ϵ
J (1)
2 (ig, jg)

]
= Poles

[
Re

(
I(2)
gg

(
ϵ, µ2

r

)
− β0

ϵ
I(1)
gg

(
ϵ, µ2

r

))]
.

(25)
Thus, using (8) and (23) we can construct a general expression for the double virtual subtraction
term in colour space:

dσ̂U
gg,NNLO = N V V

NNLO

∫
dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J
(n)
n ({p}n)

×2
{
⟨A0

n+2|J (1)(ϵ)|A1
n+2⟩+ ⟨A1

n+2|J (1)(ϵ)|A0
n+2⟩ −

β0
ϵ
⟨A0

n+2|J (1)(ϵ)|A0
n+2⟩

− ⟨A0
n+2|J (1)(ϵ)⊗J (1)(ϵ)|A0

n+2⟩+ ⟨A0
n+2|J (2)(ϵ)|A0

n+2⟩
}
. (26)

The real virtual and the double real subtraction terms are systematically inferred from (26). A
detailed description of how this is achieved can be found in [1] and it is too lengthy to be repeated
here. A sketch of the procedure can be described in terms of the following steps:

• insertion of an unresolved parton to generate part of the real virtual subtraction term;

• addition of suitable contributions at the real virtual level to ensure the cancellation of spurious
ϵ-poles and to avoid the oversubtraction of IR divergences in single unresolved limits;

• insertion of a second single unresolved parton at the real virtual level in combination with
the simultaneous insertion of two unresolved partons at the double virtual level to obtain the
double real subtraction term.

The simultaneous insertion of a pair of unresolved gluons mentioned in the last step is required
since the integrated version of a four-particle antenna is obtained after analytic integration over
the double unresolved antenna phase space and so it can not be equated to the iterated insertion

7
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Figure 1: Differential distributions in HT =
∑

j∈jets pT,j (left), transverse momentum of the leading jet
(centre) and rapidity difference between the two leading jets (right). NNLO-LC and NNLO-FC respectively
indicate the NNLO correction in the leading colour approximation and in full colour.

of a single gluon. This is the only genuinely new operation required at NNLO at is denoted by
the operator Ins2 [·]. Nevertheless from a practical standpoint this operation is very similar to the
application of Ins [·] with two unresolved partons.

4. Results and conclusions

We implemented the colourful antenna subtraction method to construct the subtraction infras-
tructure required for the calculation of the NNLO correction to the gluons-only process gg → ggg.
This computation is part of the NNLO correction to 3-jet production, recently presented in [17], and
demonstrates the applicability of the colourful antenna approach to the construction of NNLO sub-
traction terms for a highly non-trivial high-multiplicity process. A selection of results, obtained in
the NNLOjet framework, is presented in Figure 1 to illustrate the quality of numerical convergence
that can be obtained with the generated subtraction terms.

The natural next step for the development of the described approach is the extension to sub-
processes involving quarks. Consistent work has already been performed in this direction and the
goal remains the definition of a complete, process-independent and systematic procedure for the
generation of the subtraction terms in the context of antenna subtraction.
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