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1. Introduction

The endpoint factorization and next-to-leading power (NLP) resummation of gluon thrust employing
renormalization group (RG) methods has recently been presented in [1]. This proceeding highlights
the key insights alongside showcasing the main results. For precise definitions and technicalities of
the derivation, we direct the interested reader to the original publication.

In the past, hadronic event shape variables in the two-jet region were of great importance
in the development of diagrammatic resummation methods for QCD [2, 3]. Later, the advent of
soft-collinear effective theory (SCET) enabled the accuracy of resummation to be further improved.
This was first shown for the thrust variable T [4], defined as

T = max®n
∑

i | ®pi · ®n|∑
i | ®pi |

, (1)

where the index i sums over all final state hadrons (partons). As τ = 1 − T → 0, back-to-back
jets are formed by the particles, and large logarithms ln τ appear at every order in αs, signalling
a breakdown in perturbation theory. This phenomenon has been scrutinized in great detail for the
quark-antiquark two-jet process that contributes at leading power (LP) in the τ expansion.

In the work presented here, we instead focus on the “gluon thrust” phase-space region where
at leading order (LO) the gluon recoils a quark-antiquark pair

e+e− → γ∗ → [g]c + [qq̄]c̄ . (2)

The gluon and the quark-antiquark jets are chosen to be in the collinear and anticollinear directions,
respectively. As shown in figure 1, this process begins at O(αs) and it is of particular interest in our
investigations as in the limit of τ → 0 the LP [ln τ/τ]+ soft-gluon behaviour is absent. Instead, the
process begins at NLP in the τ expansion, with the leading term being αs ln τ.

The study of power corrections in a multitude of contexts has recently gathered considerable
attention. However, as we discuss below, further rapid progress has thus far been hindered by
the ubiquitous appearance of endpoint divergences in convolution integrals between the hard,
(anti-) collinear, and soft functions in the NLP factorization theorems, such as for the Drell-Yan
threshold [5]. We address this key conceptual issue in the context of gluon thrust, as it allows us to
focus on the problem of endpoint divergences without needing to address additional difficulties such
as factorization of parton distribution functions, which would affect Drell-Yan and DIS processes.

The result for the all-order logarithmic structure of “gluon thrust” at the double logarithmic (DL)
accuracy was first written down in [6] and later derived from d-dimensional consistency relations
in [7]. An interesting feature of this result is the unconventional “quark” Sudakov form factor,
which arises due to the colour mismatch between the back-to-back energetic particles when either
the quark or anti-quark in the qq̄-jet becomes soft, causing the double logarithms to be proportional
to the difference of the colour charges, CA − CF . Despite the progress in the description of this
process within SCET [6–8], it has not yet been possible to improve the resummation accuracy
beyond DL order due to the presence of endpoint-divergences in the relevant convolution integrals.

In this work, we develop the refactorization ideas employed for the DIS process [7], and Higgs
decay to two photons through light-quark loops [9, 10] in order to derive a SCETI NLP factorization
theorem valid in d = 4 dimensions. To arrive at this result, we make use of standard factorization
within SCET combined with endpoint factorization.
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Figure 1: Diagrams contributing to gluon thrust at leading αs order in QCD.

2. Heuristic discussion

In this section, we present a sketch of the factorization formula in the EFT framework, which aids
in motivating the endpoint rearrangement and subtraction terms introduced below. At O(αs), there
are two ways to induce the gluon jet:

I Both the quark and the anti-quark can carry large anti-collinear momentum and create a single
jet recoiling against the collinear gluon.

II Either the quark or the anti-quark is anti-collinear and balances the collinear gluonmomentum,
in which case the other fermion is soft.

Both situations provide identical power suppression in τ, and the further evolution of the process
is governed by LP interactions. However, the separation into possibilities I and II introduces an
ambiguity in what is precisely meant by the “soft” and “anti-collinear” modes. If we begin with
configuration I and lower the large anti-collinear momentum of either the quark or the anti-quark,
eventually it will become soft, at which point it should in fact be counted as a contribution to
situation II rather than I. As long as the definition of the jet is infrared safe, this separation is not an
issue for fixed-order computations. It is a problem, however, if the goal is to perform resummation
since, in this case, a clear separation of soft and (anti) collinear modes is required in order to
disentangle large logarithms into single-scale pieces. This tension between the mathematical
description of the modes and the physical picture is the origin of the endpoint-divergences which
appear in convolution integrals of the NLP factorization theorems.

We now focus on the Feynman diagrams in figure 1 and analyze possibilities I and II from
the point of view of SCET. Starting with I, later referred to as “B-type”, we see that the internal
propagator in the left diagram carries hard momentum qa = pg + pa (since pg is collinear and pa

anti-collinear). As the intermediate propagator is hard, q2
a ∼ Q2, it is integrated out, and the hard

scattering vertex in SCET directly produces a qq̄g state. This is shown in the left-most diagram of
figure 2. Only the total momentum of the qq̄ anti-collinear pair is fixed by momentum conservation,
while the amplitude depends on the fraction of the momentum carried by each particle. In the case
where one of these fractions becomes vanishingly small, the corresponding parton is effectively soft
and should be counted as possibility II, which we later refer to as the “A-type” contribution. Here,
the qa-intermediate propagator, or qb for the soft anti-quark case, ceases to be hard. Therefore,
the hard scattering vertex is the LP γ∗ → qq̄ process and the entire momentum of the energetic
quark (or anti-quark) is subsequently transferred to the gluon, rendering the daughter fermion soft.
In SCET, such a situation is described by an insertion of a power-suppressed SCET Lagrangian
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Figure 2: Representation of the gluon-thrust amplitude in the two-jet region in SCET.

interaction term L(1)ξq, which constitutes soft (anti-) quark emission, as depicted in the middle and
right-most diagrams of figure 2.

The fact that there exists an overlap region where the limits of two different expressions can
describe the same physical process is central to the idea of endpoint factorization. Before we make
these concepts concrete, let us start with the following schematic discussion. In Laplace space,
the factorization theorem for two-hemisphere invariant mass distribution of gluon thrust takes the
following form:

1
σ0

d̃σ
dsRdsL

=

∫ Λ

0
dωdω′

��CA0��2 × J (q̄)c̄ × Jc (ω, ω
′) ⊗ SNLP (ω, ω

′)

+

∫ 1−Λ/Q

Λ/Q

drdr ′CB1(r)CB1(r ′)∗ ⊗ J qq̄
c̄ (r, r ′) × J (g)c × S(g) . (3)

In this formula, the hard matching coefficients are denoted by C, the jet functions by J and the
soft functions by S. In the arguments of functions, we only retain the dependence on convolution
variables which contain divergent integrals. The ω and ω′ soft-collinear convolutions diverge loga-
rithmically forω, ω′→∞, and the r , r ′ hard-anti-collinear convolution integrals are logarithmically
divergent for r, r ′→ 0, 1.

The soft function SNLP contains the soft quark from situation II. In the overlap region, this
soft quark carries a large soft momentum ω and could be thought of as being a part of the J qq̄

c̄

anti-collinear function appearing in the bottom line of (3), with a small anti-collinear momentum
fraction r . Taking away this quark from SNLP leaves behind only S(g), therefore in total SNLP → S(g),
J
(q̄)
c̄ → J

qq̄
c̄ , and the hard process changes from A0-type to B1-type. Hence, in these limits, the

integrands of the two terms in (3) should be identical. This fact allows us, in the singular limits,
to perform a rearrangement at the integrand level, such that both terms are individually finite. At
this stage, we can employ standard RG techniques to resum the logarithms in the hard, jet, and soft
functions, as we show in more detail in the following sections.

3. Bare factorization theorem

Before focusing on endpoint factorization, we state the results of the derivation of the d-dimensional
SCET factorization formula for gluon thrust [1]. To start, we integrate out the hard modes and
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match the electromagnetic current to

ψ̄γ
µ
⊥ψ(0) =

∫
dtdt̄ C̃A0(t, t̄) χ̄c(tn+)γ

µ
⊥χc̄(t̄n−) + (c↔ c̄)

+
∑
i=1,2

∫
dtdt̄1dt̄2 C̃B1

i (t, t̄1, t̄2) χ̄c̄(t̄1n−)Γ
µν
i Ac⊥ν(tn+)χc̄(t̄2n−) + . . . (4)

In the first line, we have theLPhard scattering vertex, which produces a back-to-back quark-antiquark
pair. It contributes to gluon thrust through a time-ordered product with the O(λ) suppressed SCET
Lagrangian [11] term

Lξq(x) = q̄s(x−) /Ac⊥(x)χc(x) + h.c. , (5)

which transforms a collinear quark into a collinear gluon and a soft quark. The soft quark argument
xµ∓ is defined as xµ∓ = (n± · x)

n
µ
∓

2 . In the second line of (4), we have the O(λ) suppressed “B-type”
SCET operator, which produces a collinear gluon and an anti-collinear quark-antiquark pair directly,
see the left-most diagram in figure 2. The relevant Dirac structures in the B-type operator are

Γ
µν
1 =

/n−
2
γν⊥γ

µ
⊥ , Γ

µν
2 =

/n−
2
γ
µ
⊥γ

ν
⊥ . (6)

The remaining steps of the derivation are fairly standard. The collinear, anti-collinear and soft
fields are decoupled at LP by the redefinition of the collinear field with the soft Wilson line [12]
Yn−(x) = P exp

[
igs

∫ ∞
0 dsn−As(x + sn−)

]
. We then square the matrix elements, sum and integrate

over all possible final states. Since the final state |X〉 = |Xc〉|Xc̄〉|Xs〉 is made up of corresponding
modes, the matrix element factorizes into collinear, anti-collinear and soft functions. Following
this prescription for the two terms in (4) gives rise to the A-type and B-type contributions to
the factorization formula, for which we present the results separately. We give results for the
two-hemisphere invariant-mass distribution, which is related to the thrust distribution by

dσ
dτ
=

∫
dM2

RdM2
L δ

(
τ −

M2
R + M2

L

Q2

)
dσ

dM2
RdM2

L

. (7)

For the A-type contribution we find

1
σ0

dσ
dM2

RdM2
L

|A−type =
2CF

Q
f (ε) |CA0(Q2)|2

∫ ∞

0
dl+dl−

∫
dωdω′ J (q̄)c̄ (M

2
R −Ql+)

×

{
Jc(M2

L −Ql−, ω, ω′) SNLP(l+, l−, ω, ω′) + Ĵc(M2
L −Ql−, ω, ω′) ŜNLP(l+, l−, ω, ω′)

}
, (8)

and for the B-type

1
σ0

dσ
dM2

RdM2
L

|B−type =
2CF

Q2 f (ε)
∫ ∞

0
dl+dl−

∑
i,i′=1,2

∫
drdr ′CB1∗

i′ (Q
2, r ′)CB1

i (Q
2, r) (9)

×

{
δii′J

qq̄(8)
c̄ (M2

R −Ql+, r, r ′) + (1 − δii′)Ĵ qq̄(8)
c̄ (M2

R −Ql+, r, r ′)
}
J
(g)
c (M

2
L −Ql−) S(g)(l+, l−) .

In the above equations, f (ε) is a d-dimensional factor with f (0) = 1 in four dimensions. The
precise operator definitions for all the functions, along with the lowest-order results, can be found
in sections 3.1 and 3.2 of [1] for the A and B-type parts, respectively.
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3.1 Tree-level evaluation

It is instructive to investigate the structure of the expressions already at the lowest order. We take
the tree-level results for all required functions from [1] and insert them into equations (8) and (10)
which yields the following expressions. The A-type soft-quark term is

1
σ0

d2σ

dM2
R dM2

L

| A–type,
tree

=
αs
4π

2CF

Q2
f (ε)eεγE

Γ(1 − ε)

[
1
ε
δ+(M2

L)

(
(M2

R)
2

Q2µ2

)−ε
−
δ+(M2

R)

1 − ε

(
(M2

L)
2

Q2µ2

)−ε ]
, (10)

where the ε-pole originates from the logarithmic divergence in the
∫ ∞
l+

dω/ω integral for large ω
values. The soft-antiquark term is identical to the above. Turning to the B-type term, we find

1
σ0

d2σ

dM2
L dM2

R

| B–type,
tree

=
αs
4π

4CF

Q2 f (ε)
{
−

1
ε
+

ε

(1 − ε)2

}
δ+(M2

L)

(
M2

R

µ2eγE

)−ε
Γ(2 − ε)
Γ(2 − 2ε)

. (11)

Here, the ε-pole is due to a logarithmic divergence in the integral over the momentum fraction r as
r → 0 and r → 1. Summing both contributions, and taking the limit ε → 0, we arrive at

1
σ0

d2σ

dM2
L dM2

R

=
αsCF

π

1
Q2

{
δ+(M2

L)

[
ln

Q2

M2
R

− 1

]
− δ+(M2

R)

}
. (12)

After accounting for the soft-antiquark contribution to the A-type term, the ε-poles cancel in the sum
of A-type and B-type expressions, as it is needed since gluon-thrust is an infrared safe observable.
We also reproduce the coefficient −αsCF/π of the ln τ term in [13] after converting to thrust.

The single logarithm in (12) comes from dimensionally regulated convolution integrals that are
divergent in d = 4. However, in order to perform resummation, we must define renormalized hard,
(anti) collinear, and soft functions and set ε → 0 before the convolution integrals are performed.
This order of proceeding is at this point ill-defined, and in what follows, we explain how this problem
can be solved. Before proceeding, we make a helpful tree-level observation. Considering (8) with
tree-level expressions for the appearing functions, we can expand the integrand in the limit of large
ω, ω′ before performing the convolutions and arrive at the expression

αs
4π

2CF

Q2 δ+(M2
L)
δ(ω − ω′)

ωω′
f (ε)
Γ(1 − ε)

ω

(
M2

Rω

Qµ2eγE

)−ε
(13)

for the integrand of the ω, ω′ integral. Similarly for the B-type term, inserting tree-level results into
(10), expanding the integrand in the small-r limit, and only then performing the dl+dl− integrals
yields

αs
4π

2CF

Q2 δ+(M2
L)
δ(r − r ′)

rr ′
f (ε)
Γ(1 − ε)

r
(

M2
Rr

µ2eγE

)−ε
(14)

for the r, r ′ integrand. The expression in (14) is identical to one in (13) if we identify r = ω/Q,
r ′ = ω′/Q. From the heuristic discussion given in section 2, it is apparent that the agreement is not
a coincidence, but rather it must hold to all orders in αs expansion. We formalize these statements
next.

6
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Q

c

c̄

c̄

CB1

q̄

q
CA0

r → 0

q̄

DB1

c̄

s
qp2

Figure 3: Representation of the B1 matching coefficient factorization in the soft-quark limit given in (15).

4. Endpoint factorization

In this section, we use the coincidence of integrands of theA-type andB-type terms in the asymptotic
limits discussed above to rearrange and factorize the endpoint contributions so as to render the
convolution integrals finite. Similar techniques were previously used in amplitude-factorization
problems to derive endpoint factorization for exclusive B decays to P-wave charmonia [14], which
uses both SCET and non-relativistic QCD, and Higgs decay to two photons [10], which is a SCETII
process. Gluon thrust, on the other hand, is a cross-section level SCETI problem, but the main
mechanism that achieves endpoint factorization resembles the above-mentioned cases.

4.1 B1 matching coefficients in the soft-collinear limit

A key ingredient in the endpoint factorization discussion is the factorization property of the CB1
i

coefficient function of the qq̄g SCET B1 operators in the r → 0, 1 limits. The endpoint divergence
in this contribution arises because the intermediate quark or anti-quark goes on-shell, see figure 1.
The matching coefficient in the original definition is a single-scale, hard function. However, for
r → 0 (soft quark) and r → 1 (soft anti-quark) cases it becomes a two-scale object and can be itself
factorized as follows [7]:

CB1
1 (Q

2, r) = CA0(Q2) ×
DB1(rQ2)

r
+ O(r0) . (15)

Now, the two scales Q2 and rQ2 are separated into the LP hard matching coefficient, and a new
coefficient DB1(rQ2), which depends on the endpoint-scale

√
rQ. The matching coefficient DB1(p2)

is a universal function that will appear in different processes involving soft quark emission. The
DL resummation of DB1(p2) has been derived in [7]. It comprises the all-order (CA − CF )

n

colour coefficient that appears to be characteristic in soft quark emissions [6, 7, 15]. The identical
coefficient also enters the ggH amplitude with a bottom-quark loop and was computed recently
at two-loops [16]. The DB1(p2) coefficient and its evolution equation can be obtained from the
corresponding B1 operator coefficients and anomalous dimension [17, 18] by taking the limit r → 0.
The extraction of the anomalous dimension resembles to the derivation of the asymptotic kernel for
the QED light-meson light-cone distribution amplitude [19], see also [10]. For the derivation and
results, we refer to appendix A of [1]. When the gluon is replaced by a photon, the abelian version
of DB1(p2) corresponds to the jet function in the LP factorization of B→ γ`ν [20], and in the NLP
endpoint factorization of the H → γγ amplitude [10]. In the abelian case, the evolution up to two

7
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loops was inferred from renormalization-group consistency of the B → γ`ν observable [21]. The
one-loop evolution kernel of the jet function has also been obtained by direct computation in [22].

4.2 Endpoint factorization consistency conditions

As motivated in section 2 and confirmed explicitly above at O(αs), we expect the integrands of the
A- and B-type terms to have the same asymptotic limits to all orders, which is a prerequisite for
endpoint factorization. Concretely, the limit of the anti-collinear momentum n− · pc̄ = rQ, r ′Q →
0 in the B-type term should match the limit n− · k = ω, ω′ → ∞ of the corresponding soft
momentumcomponent in theA-type term. The above picture is formalized by the two refactorization
conditions [1]:

(I) Jc
(
p2, ω, ω′

)
= J

(g)
c (p2)

DB1(ωQ)
ω

DB1∗(ω′Q)
ω′

+ O

(
1
ω(′)

)
, (16)

and

(II) Q J̃ (q̄)c̄ (sR) S̃NLP (sR, sL, ω, ω′)
���
ω(′)→∞

= J̃
qq̄(8)
c̄ (sR, r, r ′) S̃(g)(sR, sL)

���
r (′)=ω(′)/Q→0

. (17)

For large ω, the soft quark field in SNLP turns anti-collinear, q̄sYn− → χ̄c̄, so it moves from SNLP to
J

qq̄(8)
c̄ . Removing q̄sYn− from SNLP leaves the LP soft function S(g), and adding it as χ̄c̄ to J (q̄)c̄

changes the anti-quark jet function into J qq̄(8)
c̄ . In total, this results in SNLPJ

(q̄)
c̄ → S(g)J qq̄(8)

c̄ ,
which is relation (II). At the same time, the quark fields in the A-type collinear function become
highly off-shell, which removes them from Jc(p2, ω, ω′). This leaves behind only the collinear
gluon, so CA0 turns into CB1. Therefore, |CA0 |2Jc → |CB1 |2J

(g)
c , which is relation (I).

4.3 Endpoint factorization formula

We can now state the endpoint-finite factorization formula. To do so concisely, we use the double-
bracket notation introduced in [9] to denote the asymptotic behaviours of the various functions. In
functions of ω, ω′, rescale ω→ κω, ω′→ κω′ and take κ →∞. Then

nSNLP (l+, l−, ω, ω′)o ≡ SNLP (l+, l−, ω, ω′) |O(κ0), (18)
nJc(p2, ω, ω′)o ≡ Jc(p2, ω, ω′)|O(κ−2) . (19)

The right-hand side of the above equation equals the right-hand side of the consistency relation (I).
Similarly, in functions of r, r ′, rescale r → rκ, r ′ → r ′κ and take κ → 0, or the corresponding
rescaling is applied to r̄ , r̄ ′. Which of the two ismeant, will be indicated by the subscript 0 or 1 on the
double bracket. Then nCB1

1 (Q
2, r)o0 ≡ CB1

1 (Q
2, r)|O(κ−1) , and nCB1

2 (Q
2, r)o1 ≡ CB1

2 (Q
2, r)|O(κ−1) ,

while nCB1
1 (Q

2, r)o1 = nCB1
2 (Q

2, r)o0 = 0. To implement the rearrangement of endpoint-singular
terms we introduce the scaleless integral

2CF

Q
f (ε) |CA0 |2J̃

(q̄)
c̄ J̃

(g)
c

∫ ∞

0
dωdω′

DB1(ωQ)
ω

DB1∗(ω′Q)
ω′

�
S̃NLP(sR, sL, ω, ω′)

�
, (20)

which vanishes in d-dimensions. We split this integral in two terms I1,2, I1 + I2 = 0, with I1 being
defined by ω or ω′ smaller than a parameter Λ and I2 the complement region, as shown on the
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Figure 4: On the left we show the split of (20) into I1 + I2 according to the correspondingly indicated
regions in the ω −ω′ plane as described in the text below (20). In the overlap region in green the asymptotic
behaviour of the A- and B-type term must agree. On the right, we display the Laplace-space LL gluon thrust
distribution. Variation of the initial scales as described in the text yields the light-red band.

left-hand side of figure 4. In the complement region ω, ω′ > Λ, and the double-bracket asymptotic
behaviour can be used for functions ofω, ω′ in theA-type term. The endpoint rearrangement consists
of subtracting I1 from the B-type term and I2 from the A-type term. The subtracted expressions are
now separately endpoint-finite, but depend on Λ which cancels exactly between the two terms as
long as we do not make further approximations. Starting with the A-type contribution,subtracting
from it the complement region I2 of the integral (20), and using the endpoint factorization conditions
results in

1
σ0

d̃σ
dsRdsL

|A−type =
2CF

Q
|CA0 |2 J̃

(q̄)
c̄

∫ ∞

0
dωdω′

{
J̃c(sL, ω, ω′) S̃NLP(sR, sL, ω, ω′)

− θ(ω − Λ)θ(ω′ − Λ) nJ̃c(sL, ω, ω′)onS̃NLP(sR, sL, ω, ω′)o

+
˜̂
Jc(sL, ω, ω′)

˜̂SNLP(sR, sL, ω, ω′)
}
, (21)

where we set f (ε) = 1 as ε → 0. The remaining part I1 of the integral (20) is now combined with
i = i′ = 1 part of the B-type term, and after using refactorization conditions we have

1
σ0

d̃σ
dsRdsL

| B–type
i=i’=1

=
2CF

Q2 J̃
(g)
c S̃(g)(sR, sL)

∫ ∞

0
drdr ′

[
θ(1 − r)θ(1 − r ′)CB1∗

1 (r
′)CB1

1 (r) J̃
qq̄(8)
c̄ (sR, r, r ′)

−
[
1 − θ(r − Λ/Q)θ(r ′ − Λ/Q)

] nCB1∗
1 (r

′)o0 nCB1
1 (r)o0 nJ̃ qq̄(8)

c̄ (sR, r, r ′)o0

]
. (22)

The i = i′ = 2 term with the anti-quark becoming soft takes a similar form and is explicitly provided
in [1].

9
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5. Resummation

Solving of the necessary RG equations for the objects appearing in the above factorization formulas
is discussed in detail in sections 5.1 and 5.2 of [1]. The final result for the leading-logarithmic
accurate resummed expression after all the individual pieces combined together reads in Laplace
space:

1
σ0

d̃σ
dsRdsL

|LL = 2 ·
2CF

QsR

αs(µc)

4π
exp [4CFS (µh, µc̄) + 4CAS (µs, µc)] ×

(
Q2

µ2
h

)−2CF A(µh,µc̄ )

×

(
1

sLsRe2γE µ2
s

)−2CAA(µs,µc ) ∫ Q

σ

dω
ω

(
ω

sReγE µ2
sΛ

)−2(CF−CA)A(µsΛ,µhΛ)

× exp [4 (CF − CA) S (µsΛ, µhΛ)] (sReγE Q)2CF A(µhΛ,µc̄ )+2CAA(µc,µhΛ) , (23)

with the functions S (ν, µ) and Aγi (ν, µ) defined as in [23]. We note that µ2
hΛ
∼ ωQ and µ2

sΛ
∼ ω/sR

areω-dependent scales that appear inside the integrand for reasons explained in [1]. The importance
of next-to-leading logarithms can be studied by varying the various matching scales around the
values adopted in (23). We vary the three pairs of scales (µh, µhΛ), (µc, µc̄), (µs, µsΛ) by a factor
of 1/2 and 2 around their default scales. Taking the minimum and maximum values to compute
the scale variation. We show this for the normalized Laplace-space distribution Qs

σ0
d̃σ
ds in the right-

hand panel of figure 4 as the light-red band around the red curve (LL) that represents (23). For
comparison, the tree-level (LO) and linear-β0 truncation of the LL expression are displayed. The
sizeable scale variation in the figure emphasizes the need for NLL resummation. The endpoint-
rearranged factorization formula presented in this work provides the starting point for this systematic
improvement.

6. Conclusion

In this work, we summarized the derivation of a novel endpoint factorization relation for the NLP
gluon-thrust distribution in the two-jet region, as achieved in [1]. This off-diagonal contribution
contains a gluon-initiated jet recoiling against a quark-antiquark pair, which involves subleading-
power cross-section level soft and jet functions. The framework shares many similarities with the
rearrangement employed for the resummation of the H → γγ bottom-loop amplitude [9, 10] and
allows for the first time to systematically remove endpoint divergences in the convolution integrals of
SCETI factorization theorems, opening the path to NLP resummation for collider observables with
soft quark emission. Employing the subtraction of endpoint divergences with the aid of operatorial
factorization conditions, we managed to reshuffle the factorization theorem such that the individual
terms are free from endpoint divergences and can be written in terms of renormalized hard, (anti)
collinear, and soft functions in four dimensions. At this point, standard RG techniques can be applied
to obtain the resummed integrands. In [1], we derived the anomalous dimensions of the NLP jet and
soft functions using RG consistency and endpoint factorization relations. We also calculated the
one-loop anomalous dimension for the hard matching coefficients, which enabled us to perform the
first resummation of the endpoint-divergent SCETI observable at the LL accuracy using exclusively

10
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RG methods. We verified that our results can recover the earlier results at DL accuracy [6, 7]
and we evaluated the numerical impact of the LL corrections. Our main result for gluon-thrust is
(23), which provides an expression for the two-hemisphere invariant mass distribution in Laplace
space. The next step in further exploration of NLP resummation is the extension of the present
work and related soft-quark emission processes to NLL accuracy, which requires the calculation
of renormalization kernels for the NLP soft and jet functions at order O(αs), and application of
the methods presented here to address endpoint divergent issues appearing in diagonal channels of
relevant processes.
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