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1. Introduction

The production of a lepton-pair with high transverse momentum, also known as Drell-Yan
(DY) process, is of primary importance for precision programmes at hadron colliders: it has a clean
experimental signature and a high production rate, allowing for a precise extraction of fundamental
electroweak parameters. In particular, thanks to the large amount of high-quality data collected by
the experiments at the LHC, the measurements of several observables of interest, as the mass of
the W boson[1] or the electro-weak mixing angle[2], have been obtained with a precision which
is starting to become competitive with previous results from LEP, and that is expected to reach
sub-permille level by the end of the high-luminosity phase of the LHC. Such experimental accuracy
needs to be matched by precise theoretical Standard Model predictions, that also play a crucial role
for new physics searches by providing severe constraints on possible models.

For these reasons, in the last years there has been an ongoing effort in order to improve the
theoretical predictions on DY processes. The computation of the on-shell Z boson production cross-
section had some recent progress with the inclusion first of QCD-QED mixed corrections[3–5],
then mixed QCD-electroweak (EW) corrections[6–10]. Similar mixed corrections have also been
computed for the production of an on-shell W boson[11, 12].

In the following, we will focus on the neutral-current DY process, where the final-state lepton
pair is mediated by an off-shell photon or Z-boson:

𝑞(𝑝1) + 𝑞(𝑝2) → 𝑙− (𝑝3) + 𝑙+(𝑝4) . (1)

By considering a perturbative expansion in the strong (𝛼𝑆) and electroweak (𝛼) coupling, we can
write the cross-section for this process as:

𝑑𝜎 =
∑︁
𝑖, 𝑗

𝛼𝑖𝑆𝛼
𝑗𝑑𝜎 (𝑖, 𝑗 ) , (2)

where 𝑑𝜎 (0,0) is the leading order contribution.
The dominant effect from higher order corrections comes from the QCD corrections 𝑑𝜎 (𝑖,0) ,

which have been computed at next-to-leading order (NLO)[13], next-to-next-to-leading order
(NNLO) [14–16] and, recently, up to next-to-next-to-next-to-leading order (N3LO)[17–22].

Electroweak corrections 𝑑𝜎 (0, 𝑗 ) have a smaller impact, as suggested by the so-called "physical
counting" 𝛼𝑆 ≃ 𝛼2. Nevertheless, they are not negligible. They are known up to NLO[23–25],
while for NNLO, only the Sudakov high energy approximation is available[26].

The large size of both NLO QCD and NLO EW corrections suggests that also the mixed
strong-electroweak corrections 𝑑𝜎 (1,1) might have a sizeable impact, which, by physical counting,
is expected to be comparable with N3LO QCD contributions. Recent results from two independent
computations[27, 28] show indeed an effect of ∼ 0.5% with respect to the LO result. In this
proceeding, we will present some technical aspects of the latter results, namely the computation of
the mixed QCD-EW two-loop virtual corrections[29] that represented one of the bottlenecks of the
full calculation and that have been used to obtain the phenomenological results presented in[27].

2



P
o
S
(
L
L
2
0
2
2
)
0
7
0

Two-loop mixed QCD-EW corrections to neutral current Drell-Yan Simone Devoto

2. Computational framework

The results presented in[27] have been obtained by using the 𝑞𝑇 -subtraction formalism[30] to
treat and cancel singularities of infrared (IR) origin. In the following, the cancellation of the IR poles
of the virtual corrections is thus performed within this framework; our results can nevertheless be
straightforwardly generalised to any other subtraction scheme by properly replacing the subtraction
operator.

The 𝑞𝑇 -subtraction formalism is at the moment only developed for the case of massive final-
state emitters[31, 32]. As a consequence, we keep in our computation the dependence on the
lepton mass 𝑚𝑙 to regularise the final-state collinear singularities, while dropping it in the finite
contributions. We thus perform a small lepton mass limit, by considering the ratio 𝑚𝑙/

√
𝑠 and by

keeping only logarithmic terms ≃ log(𝑚𝑙/
√
𝑠).

When dealing with intermediate unstable particles, such as the W or Z boson, it is useful
to perform the calculation in the complex mass scheme in order to regularise the behaviour at the
resonance. In our computation we thus introduce a complex mass 𝜇𝑉 for the gauge boson𝑉 = 𝑍,𝑊 ,
defined as:

𝜇2
𝑉 = 𝑚2

𝑉 − 𝑖Γ𝑉𝑚𝑉 , (3)

where the real parameters 𝑚𝑉 and Γ𝑉 are, respectively, the mass and the decay width of the gauge
boson. The introduction of the complex mass scheme also affects the kinematical variables of the
process. We define the Mandelstam variables:

𝑠 = (𝑝1 + 𝑝2)2 , 𝑡 = (𝑝1 − 𝑝3)2 , (4)

and their respective dimensionless kinematic invariants:

𝑥𝑉 = − 𝑠

𝑚2
𝑉

, 𝑦𝑉 = − 𝑡

𝑚2
𝑉

. (5)

When replacing the pole mass with the complex mass, the adimensional variables 𝑥𝑉 , 𝑦𝑉 become,
in general, complex-valued. As it will be shown in the following, this feature will require some
additional care when dealing with the evaluation of the master integrals, in order to perform properly
the analytic continuation of the solution in the complex plane.

3. Evaluation of the interference term

By following the expansion in Eq.(2), we can write the amplitude of the partonic process in
Eq.(1) as:

|M⟩ = |M (0)⟩ + 𝛼𝑆 |M (1,0)⟩ + 𝛼 |M (0,1)⟩ + 𝛼𝑆𝛼 |M (1,1)⟩ + · · · (6)

In order to evaluate the two-loop mixed QCD-EW corrections, we need to compute the following
interference terms:

⟨M (0) |M (1,0)⟩ , ⟨M (0) |M (0,1)⟩ , ⟨M (0) |M (1,1)⟩ . (7)

The first step is the generation of the relevant Feynman diagrams. We used two completely
independent approaches, one based on FeynArts[33], one based on QGRAF[34]. Two independent
in-house routines have then been used to automatically perform the Dirac and Lorentz Algebra.
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The computation is performed in dimensional regularisation, which leads to the problem of
handling consistently the inherently four-dimensional object 𝛾5 in 𝑑 = 4 − 2𝜖 dimensions. The
prescription of ’t Hooft and Veltman[35] proposes to abandon the anticommutation relation

{𝛾𝜇, 𝛾5} = 0 , (8)

while keeping the cyclicity of the trace. The prescription of Kreimer et al.[36], on the other hand,
suggests renouncing the cyclicity of the trace while keeping the anticommutation relation, reducing
the computational load in a significative way. It has been recently proven for neutral-current DY
that at two loops the two prescription, while yielding to different scattering amplitudes, provide the
same finite corrections after consistent subtraction of the IR and UV poles[37].

In our computation, we keep the anticommutation relation of 𝛾5, using a fixed point to write
the Dirac traces. By using this propriety, we bring all the 𝛾5 matrices at the end of the Dirac trace,
and by using the relation 𝛾2

5 = 1 we obtain a trace with, at most, a single leftover 𝛾5. In the latter
case, we use the identity

𝛾5 =
𝑖

4
𝜖𝜇𝜈𝜌𝜎𝛾

𝜇𝛾𝜈𝛾𝜌𝛾𝜎 . (9)

At this stage, the interference terms are written as a sum of tensor integrals. This expression,
after some simple algebra, can be converted in terms of a sum of scalar integrals, expressed as
elements of an integral family, each with the respective rational coefficient. All the scalar integrals
that appear in the expression, however, are not independent, and linear relations between them are
provided by integration by parts (IBP) identities, that allow to reduce the original large set of scalar
integrals to a smaller set of Master Integrals (MIs).

We executed the reduction to MIs by using two different public codes that implement Laporta
algorithm [38] , Kira[39] and LiteRed[40]. Our final basis of MI is composed by different
integrals already known in the literature: MIs relevant for the QCD-QED corrections with massive
final state[41, 42]; MIs with one or two internal masses, relevant for the EW form factor[43, 44]
and, finally, 31 MIs with 1 mass and 36 MIs with 2 masses (including boxes)[45], relevant for the
QCD-EW corrections to the full DY.

4. Semi-analytical solution of the master integrals: SeaSyde

Despite the fact that all the MIs needed to complete our calculation were already studied in the
literature, 5 box integrals with two internal massive lines were available1 as Chen iterated integrals.
The difficult numerical evaluation of these functions requires finding alternative strategies.

We solved the 5 remaining MIs by using a semi-analytical approach. We define a result as
semi-analytical when it can be expanded as a power series at every point of its domain, but without
the additional functional relations that are usually known when the result is provided in closed form.
In our computation, in particular, we express the 5 missing MIs as a Laurent expansion, which is
obtained by solving by series the system of differential equations satisfied by the MIs[47].

This algorithm has been implemented for real values of the kinematical variables in the
Mathematica package DiffExp[48]2. Nevertheless, in our computation we needed to deal with

1A closed form for them has been recently found[46], but is not yet public.
2For a recent application of the same algorithm to the auxiliary mass flow method see also AMFlow[49].
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Figure 1: Example of the effect of branch-cuts on the convergence of the expanded solution: reduced
convergence area (left) and different path for the analytic continuation (right).

complex-valued kinematical variables because of the introduction of the complex-mass scheme,
as shown in Eq.(5). For this reason, we implemented the same method in an independent public
Mathematica package, SeaSyde[50], generalising it in order to perform the analytic continuation
of the solution on the complex plane.

Given a generic system of differential equations, we introduce an ansatz for the solution of the
associated homogenous equation written in terms of a Laurent series expanded around the initial
boundary condition 𝑧0: 𝑓hom(𝑧) = (𝑧− 𝑧0)𝑟

∑∞
𝑘=0 𝑐𝑘 (𝑧− 𝑧0)𝑘 . The coefficients 𝑐𝑘 can be determined

by plugging 𝑓hom in the homogenous system and by solving the set of algebraic equations obtained
up to the desired order in the expansion. This provides a homogenous solution, that can in turn be
used to compute the particular solution for the original problem by using the variation of constant
method.

The solution obtained can be computed with an arbitrary number of significant digits, limited
only by the precision of the boundary conditions. It is valid within a radius of convergence given
by the distance from the closest singular point, that can be directly obtained from the system of
differential equations. If this constraint does not allow evaluating the solution for the desired values
of the kinematical variables, the procedure can be repeated using as a new boundary condition one
of the points inside the radius of convergence. With this procedure, the boundary condition can
effectively be transported to any point of the complex plane. This is illustrated in the left panel of
Fig.1, where the pole 𝑤0 limits the convergence of the solution expanded around 𝑧0 within the circle
Γ0: nevertheless, the point 𝑧1 can now be used as a new boundary condition to obtain the solution
within the new circle Γ1.

Some additional complications arise from the fact that, if the poles present a logarithmic
behaviour, we need to insert branch-cuts to make the solution single-valued. Within SeaSyde,
the branch-cuts are always chosen as the horizontal lines parallel to the real axis that go from the
singular point to −∞. While their presence does not affect the radius of convergence, it reduces
the area in which the solution converges to the desired value, as shown in the left panel of Fig.1:
once the branch-cut is crossed, the solution converges to a value that does not refer anymore to the
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Riemann sheet which is consistent with the branch-cut itself. For the same reason, the path chosen
to transport the boundary condition from one point to another requires to avoid to cross the branch
cuts: this is shown in the right panel of Fig.1, where the dotted path needs to be avoided in favour
of the solid path.

5. Results and conclusions

We used the package SeaSyde to solve the system of differential equations associated to the 36
MIs with 2 internal masses. The result of 31 MIs provided a cross check with the known analytic
expressions, while 5 MIs, the ones known as Chen iterated integrals, are a prediction. Several
checks on the MIs have been performed by using Fiesta[51], PySecDec[52] and DiffExp.

By combining the rational coefficients with the expression of the MIs, after the subtraction of
the infrared and ultraviolet divergences, we obtained the two-loop virtual corrections for neutral-
current DY process in the complex-mass scheme and in the small lepton mass limit, keeping the
collinear logarithms.

The result is publicly available as a Mathematica notebook[29] in the form of a grid. The
production of the grid required O(12h) on a 32-cores machine, but the interpolation of the grid
can be performed in negligible time. While phenomenological results obtained by using this
computation have been already presented[27], more detailed studies are ongoing. Furthermore, the
automatic nature of several steps of the procedure outlined in this proceeding leaves the door open
to several further applications, including mixed corrections for charged current DY3 and, possibly,
first steps towards NNLO-EW corrections.
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