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1. Introduction

A new generation of experimental facilities provide a wealth of data on hard exclusive reactions
in the coming decade. It is expected that these data will have a very high precision and provide a
much deeper insight in the hadron structure. Therefore, a pressing question is whether hard exclusive
hadronic reactions are under sufficient theoretical control for fully quantitative predictions. Deeply-
virtual Compton scattering (DVCS) [1–3] is believed to be the “gold-plated” process that will lead
to an understanding of the three-dimensional structure of the proton. The theoretical framework
for the QCD description of DVCS is based on collinear factorization in terms of generalized parton
distributions (GPDs) [4–6] and is well understood at the leading-twist level. The next-to-next-to
leading order (NNLO) analysis of parton distributions has become the standard in this field [7], so
that the NNLO precision for DVCS is necessary as well. The NNLO accuracy implies that one
needs to know three-loop evolution equations for GPDs and two-loop coefficient functions (CFs) in
the operator product expansion (OPE) of the DVCS amplitude.

This program was recently completed for the flavor-nonsinglet sector. The three-loop evolution
equations were obtained in [8, 9] and two loop CFs were derived recently in [10–12]. Below we
discuss briefly the method used in [10, 11] and present two-loop expressions for the nonsinglet CFs.

2. Preliminaries

The amplitude of the DVCS process is given by a matrix element of the time-ordered product
of two electromagnetic currents

A`a (𝑞, 𝑞′, 𝑝) = 𝑖
∫

𝑑4𝑥 𝑒−𝑖𝑞𝑥 ⟨𝑝′ |𝑇{ 𝑗em
` (𝑥) 𝑗em

a (0)}|𝑝⟩ . (1)

Here 𝑞, 𝑞′ are the momenta of the virtual (incoming) and real (outgoing) photons and 𝑝, 𝑝′ are
the nucleon momenta in initial and final states. The longitudinal plane is defined by two light-like
vectors [13], 𝑛 = 𝑞′, �̄� = −𝑞 + (1 − 𝜏)𝑞′, where 𝜏 = 𝑡/(𝑄2 + 𝑡), 𝑄2 = −𝑞2. In the leading-twist
approximation the DVCS amplitude is written as a sum of vector and axial-vector contributions

A`a = −𝑔⊥`a𝐴+ + 𝜖⊥`a𝐴− + . . . , (2)

where the (axial-)vector amplitudes 𝐴± can be written in the form

𝐴±(b, 𝑄2) = 1
2

∑︁
𝑞

𝑒2
𝑞

1∫
−1

𝑑𝑥

b
C±

(
𝑥/b, 𝑄, `

)
𝐹±
𝑞 (𝑥, b, 𝑡, `). (3)

Here 𝐹±
𝑞 (𝑥, b, 𝑡, `) are the corresponding (axial)vector GPD and b is the skewedness parameter.

The coefficient functions C±(𝑥/b) are analytic functions: they are real in the region |𝑥/b | < 1 and
beyond this region obtained via the b → b − 𝑖𝜖 prescription.

At the leading and next-to-leading orders the coefficient functions,

𝐶 (𝑥/b) = 𝐶0(𝑥/b) + 𝑎𝑠𝐶 (1) (𝑥/b) + . . . , 𝑎𝑠 = 𝛼𝑠/4𝜋, (4)
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take the form [14, 15]

𝐶
(0)
± (𝑥/b) = 1

𝑧
∓ 1

1 − 𝑧 ,

𝐶
(1)
± (𝑥/b) = 𝐶𝐹

𝑧

(
ln2 𝑧 − (2 ± 1) 𝑧

𝑧
ln 𝑧 − 9

)
∓ (𝑧 → 1 − 𝑧) , (5)

where 𝑧 = 1
2 (1 − 𝑥/b). It was shown in ref. [16] that the coefficient functions in DVCS and DIS

processes are (in a conformal field theory (CFT)) related each to other. Since the DIS CFs are known
at NNLO [17, 18] one can restore the DVCS CFs without a calculation of Feynman diagrams, as it
was done in ref. [15].

3. Conformal OPE

The OPE for the product of two currents has, schematically, the form

𝑇{ 𝑗em
` (𝑥) 𝑗em

a (0)} =
∑︁
𝑁,𝑘

𝐶𝑁,𝑘𝜕
𝑘
+O𝑁 (0). (6)

Here O𝑁 (0) are local operators of increasing dimension and 𝐶𝑁𝑘 are the corresponding CFs.
Contributions of the operators with total derivatives vanish identically in the forward limit, like
in DIS, and can be omitted. Thus only the sum over 𝑁 remains and the necessary CFs, 𝐶𝑁 ≡
𝐶𝑁,𝑘=0, are known to three-loop accuracy [17, 18]. In off-forward reactions, operators with total
derivatives have to be taken into account and one needs to know their coefficients, 𝐶𝑁,𝑘 , as well. In
conformal field theories all 𝐶𝑁𝑘 with 𝑘 > 0 are completely determined by the CF of non-derivative
operator, 𝐶𝑁0, [19].

QCD is not a conformal theory in 𝑑 = 4, it becomes a CFT in non-integer 𝑑 = 4−2𝜖 dimensions
at Wilson-Fisher fixed point 𝛼∗𝑠, such that the 𝛽(𝛼∗𝑠) = 0. One can consider the DVCS process in
QCD in non-integer dimensions. The formula (1) remains true with the only modification: the
perturbative expansion of CFs involves 𝜖-dependent coefficients:

𝐶 (𝑎𝑠, 𝜖) = 𝐶0 + 𝑎𝑠 𝐶 (1) (𝜖) + 𝑎2
𝑠 𝐶

(2) (𝜖) + . . . . . . , 𝐶 (𝑘 ) (𝜖) = 𝐶 (𝑘 ) + 𝜖 𝐶 (𝑘,1) + . . . , (7)

where the tree-level CFs, 𝐶 (0) , do not depend on 𝜖 . The “form" of the CFs at the critical point,
𝐶 (𝑎∗𝑠, 𝜖), is restricted by the conformal symmetry. he The difference between the physical 𝑑 = 4
and the critical CFs comes, at two loop, from one loop diagrams which have to be calculated with
𝑂 (𝜖) terms. Namely

𝐶 (𝑎𝑠, 0) = 𝐶 (𝑎𝑠, 𝜖∗) + 𝑎2
𝑠 𝛽0𝐶

(1,1) . (8)

The expansion (6) can be written in a more practical form as follows (for brevity we consider the
vector case only)

T
{
𝑗 ` (𝑥1) 𝑗 a (𝑥2)

}
=

∑︁
𝑁,even

`𝛾𝑁

(−𝑥2
12)𝑡𝑁

∫ 1

0
𝑑𝑢

{
−1

2
𝐴𝑁 (𝑢)[`a (𝑥) + 𝐵𝑁 (𝑢)𝑔`a (9)

+ 𝐶𝑁 (𝑢)𝑥a12𝜕
`

1 − 𝐶𝑁 (�̄�)𝑥`12𝜕
a
2 + 𝐷𝑁 (𝑢)𝑥2

12𝜕
`

1 𝜕
a
2

}
O𝑥12...𝑥12

𝑁
(𝑥𝑢21) .
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Here 𝑥12 = 𝑥1 − 𝑥2, �̄� = 1 − 𝑢, 𝑥𝑢21 = �̄�𝑥2 + 𝑢𝑥1, 𝜕`
𝑘
= 𝜕

𝜕𝑥
`

𝑘

, [`a (𝑥) = 𝑔`a − 2𝑥`

12𝑥
a
12

𝑥2
12

and

O𝑥...𝑥
𝑁 (𝑦) = 𝑥`1 . . . 𝑥`𝑁

O`1...`𝑁

𝑁
(𝑦) , (10)

where O`1...`𝑁

𝑁
(𝑦) are the leading-twist conformal operators with anomalous dimension 𝛾𝑁 (𝛼𝑠)

and 𝑡𝑁 = 2 − 𝜖∗ − 1
2𝛾𝑁 (𝑎𝑠). Conformal invariance and current conservation 𝜕` 𝑗` = 0 lead to

constraints on the functional form of the invariant functions 𝐴𝑁 (𝑢), . . . , 𝐷𝑁 (𝑢). One obtains

𝐴𝑁 (𝑢) = 𝑎𝑁 𝑢 𝑗𝑁−1�̄� 𝑗𝑁−1 , 𝐵𝑁 (𝑢) = 𝑏𝑁 𝑢 𝑗𝑁−1�̄� 𝑗𝑁−1 , (11)

with 𝑗𝑁 = 𝑁 + 1 − 𝜖∗ + 1
2𝛾𝑁 (𝑎𝑠) is the so-called conformal spin. The expression for the functions

𝐶𝑁 (𝑢) and 𝐷𝑁 (𝑢) can be found in ref. [10].
We assume the conventional parametrization for the nucleon matrix element of the conformal

operator

⟨𝑝′ |𝑛`1 . . . 𝑛`𝑁O`1...`𝑁
|𝑝⟩ =

∑︁
𝑘

(
−1

2

) 𝑘
𝑓
(𝑘 )
𝑁
𝑃𝑁−𝑘
+ Δ𝑘

+ = 𝑃𝑁
+ 𝑓𝑁 (b) , 𝑓𝑁 (b) ≡

∑︁
𝑘

𝑓
(𝑘 )
𝑁
b𝑘 . (12)

Note that 𝑓 (0)
𝑁

= 𝑓 DIS
𝑁

. Sandwiching (9) between the nucleon states (in DIS and DVCS kinematics)
one derives after Fourier transform a representation for the DVCS amplitude 𝐴+ involving the DIS
coefficient functions 𝐶1(𝑁)

𝐴+(b, 𝑄2) =
∑︁

𝑁,even
𝑓𝑁 (b)

(
1

2b

)𝑁
𝐶1

(
𝑁,
𝑄2

`2 , 𝑎𝑠, 𝜖∗

)
Γ( 𝑑2 − 1)Γ(2 𝑗𝑁 )

Γ( 𝑗𝑁 )Γ( 𝑗𝑁 + 1
2 − 1)

. (13)

At the same time the amplitude 𝐴+ is given by the convolution (3) of the GPD with the coefficient
function we are interested in. The GPD can be expanded over a set of functions 𝑃𝑁 whose form is
defined by the operators (10). Since the CF depends on the ratio 𝑥/b it is convenient to put b = 1

𝐹+(b = 1, 𝑄2) =
∑︁

𝑁,even
𝑟𝑁𝑃𝑁 (𝑥) . (14)

The functions 𝑃𝑁 and the coefficients 𝑟𝑁 depend on a renormalization scheme. In a special scheme,
the so-called conformal scheme [16] 1 the functions 𝑃𝑁 and the coefficients 𝑟𝑁 are known:

𝑃𝑁 (𝑥) = (1 − 𝑥2)_𝑁−1/2𝐶
(_𝑁 )
𝑁−1 (𝑥), _𝑁 =

3
2
+ 𝛽(𝑎𝑠) +

1
2
𝛾𝑁 (𝑎𝑠). (15)

The explicit expressions for the coefficients 𝑟𝑁 can be found in [10]. The moments of the CF in the
conformal scheme (CS) with respect to the functions 𝑃𝑁 take the form :∫ 1

−1
𝑑𝑥C(𝑥, 𝑄2, 𝑎𝑠)𝑃 (_𝑁 )

𝑁−1 (𝑥) = 𝐶1

(
𝑁,
𝑄2

`2 , 𝑎𝑠, 𝜖∗

) 2Γ( 𝑑2 − 1)Γ(_𝑁 + 1
2 )Γ(𝑁 − 1 + 2_𝑁 )

𝜎𝑁 Γ(2_𝑁 )Γ( 𝑗𝑁 + 1
2 − 1)

, (16)

1The conformal scheme is fixed by a requirement for the generator of special conformal transformations, 𝑆+, to have
a canonical form (for more details see [8]). The operator U which transforms the MS scheme to the CS scheme is known
now with two-loop accuracy [20].
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where 𝜎𝑁 are the eigenvalues of the operator U, see ref. [10] for more details. This equation
unambiguously determines the coefficient function C(𝑥). The effective method to restore this
function is the following: let us look for C(𝑥) in the form

C(𝑥) =
∫ 1

−1
𝑑𝑥′𝐶 (0) (𝑥′)𝐾 (𝑥′, 𝑥) , (17)

where 𝐶 (0) is the LO coefficient function, Eq. (5), and 𝐾 (𝑥′, 𝑥) is the kernel of the SL(2,R)
invariant operator. It implies that the functions 𝑃𝑁 (𝑥) are the eigenfunctions of the operator 𝐾 ,∫
𝑑𝑥′𝐾 (𝑥, 𝑥′)𝑃𝑁 (𝑥′) = 𝐾 (𝑁)𝑃𝑁 (𝑥). The eigenvalues 𝐾 (𝑁) are fixed by Eq. (16). Any SL(2, 𝑅)

invariant operator is uniquely determined by its spectrum and can be effectively restored. Evaluating
the integral (17) one obtains the CF in the CS scheme. Finally, one transforms the coefficient function
to the MS scheme:

𝐶 (𝑥) =
∫ 1

−1
𝑑𝑥′C(𝑥′)U(𝑥′, 𝑥) . (18)

The final answer for the two-loop (axial-)vector nonsinglet CFs takes the form [10, 11]:

𝐶
(2)
± (𝑥/b) = 𝛽0𝐶𝐹 𝐶

(𝛽)
± (𝑥/b) + 𝐶2

𝐹𝐶
(𝑃)
± (𝑥/b) + 𝐶𝐹

𝑁𝑐

𝐶
(𝑁𝑃)
± (𝑥/b) , (19)

where

𝐶
(𝛽)
± (𝑥/b) =

{
2
𝑧

(
H100 −

1
2

H110 − H000

)
+
(
10
3𝑧

± 1
𝑧

)
H00 −

(
1 ± 1
𝑧

+ 14
3𝑧

)
H10 −

Z2
𝑧

H1

−
(
19
9𝑧

+ 10 ± 13
6𝑧

)
H0 −

1
𝑧

(
457
24

+ 11 ∓ 3
3

Z2 + Z3

) }
∓ (𝑧 → 𝑧),

𝐶
(𝑃)
± (𝑥/b) =

{
2
𝑧

(
6H0000 − H1000 − 2H200 − H1100 − H120 − H210 + H1110

)
∓ 2
𝑧

H000 +
2
𝑧

H20

+ 4
𝑧

H110 −
(
8
𝑧
− (2 ± 2)

𝑧

)
H100 −

(
12 ± 1
𝑧

+ 38
3𝑧

)
H00 +

(
3 ± 3
𝑧

+ 28 ∓ 6
3𝑧

)
H10

+ 2
𝑧
Z2

(
H11 − H2 − H10 − 4H00

)
+ 2
𝑧

(
218 ± 5

12
± (3 ± 2)Z2 ∓ 2Z3

)
H0

+ 2
𝑧

(
3Z2 + 16Z3 −

32
9

)
H0 +

1
𝑧

(701
24

+ 25 ∓ 9
3

Z2 + (41 ∓ 2)Z3 + 3Z2
2

)}
∓ (𝑧 ↔ 𝑧),

𝐶
(𝑁𝑃)
± (𝑥/b) =

{
12(𝑧 ± 𝑧)

(
H20 + H110 − Z3

)
+ 12(1 ± 1)

(
H10 − H0

)
−
(
4
𝑧
∓ 2
𝑧

) (
H30 + H210 + H31

)
− 6
𝑧

H200 +
(
8
𝑧
∓ 2
𝑧

)
H4 +

(
6
𝑧
∓ 4
𝑧

)
H22 ∓

(8 ± 2)
𝑧

(
H3 − H20

)
− 6(1 ∓ 1)

𝑧
H10

+
[
4
𝑧

(
2
3
− Z2

)
∓ 2
𝑧
(Z2 − 3 ± 2)

]
H00 −

[
4Z2 − 4
𝑧

− 21 ∓ 17 ± 6Z2
3𝑧

]
H2

+
[
2
𝑧

(
7Z3 −

16
9

)
± 1
𝑧

(
35 ± 2

3
+ (8 ± 2)Z2 − 6Z3

)]
H0

− 1
𝑧

(
3Z2

2 + (13 ∓ 7)Z2 − 6(5 ∓ 1)Z3 +
73
12

)}
∓ (𝑧 ↔ 𝑧) , (20)

where 𝑧 = (𝑥 − b)/2b and H®𝑛 ≡ H®𝑛 (𝑧) are harmonic polylogarithms [21].
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Figure 1: The DVCS vector CF 𝐶 (𝑥/b) in Eqs. (5), (19) at ` = 𝑄 = 2 GeV in the ERBL region 𝑥 < b. The
LO (tree-level), NLO (one-loop) and NNLO (two-loop) CFs are shown by the black solid, blue dashed and
blue dash-dotted curves on the left panel, respectively. The right panel shows the ratios NLO/LO (dashed),
NNLO/LO (dash-dotted) and NNLO/NLO (solid).

4. Numerical estimates

The numerical results in this section are obtained assuming the photon virtuality 𝑄2 = 4 GeV2

and the corresponding value of the strong coupling 𝑎𝑠 (4 GeV2) = 𝛼𝑠 (4 GeV2)/(4𝜋) = 0.02395.
The results for vector CFs are shown in Figs. 1 and 2, respectively. In the first figure, we also show
on the right panel the ratios of NLO and NNLO to the leading order (LO) contribution, NLO/LO
and NNLO/LO, and the ratio NNLO/NLO. It is seen that the NNLO (two-loop) and NLO (one-loop)
contributions to the CF have the same sign and are negative with respect to the LO (tree-level) result
in the bulk of the kinematic region apart from the end points |𝑥 | → |b | where the loop corrections
are positive and dominated by the contributions of threshold double-logarithms. We observe that
the NNLO contribution is significant. In the ERBL region, it is generally about 10% of the LO
result (a factor two below NLO). In the DGLAP region it is less important and in fact negligible for
the real part at 𝑥/b > 2, and for the imaginary part at 𝑥 > 4b.

In order to estimate corrections to the Compton form factors,

H(b) =
∫ 1

−1

𝑑𝑥

b
𝐶 (𝑥/b)𝐻 (𝑥, b) . (21)

we used the GPD model from Ref. [5, Eq. (3.331)], which is based on the so-called double-
distributions ansatz and allows for a simple analytic representation: It turns out that the NNLO
correction to the absolute value of the Compton form factor H is quite large: it is only about a
factor two smaller than the NLO correction and decreases the Compton form factor by about 10%
in the whole kinematic range. The NNLO correction for the phase proves to be much smaller.

5. Summary

Using an approach based on conformal symmetry we have calculated the two-loop CFs in
DVCS in the MS scheme for the flavor-nonsinglet vector contributions. Analytic expressions for

6



P
o
S
(
L
L
2
0
2
2
)
0
7
4

Vector and axial-vector coefficient functions Alexander N. Manashov

1 2 3 4 5 6

-1.5

-1.0

-0.5

1 2 3 4 5 6

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Figure 2: The DVCS vector CF 𝐶 (𝑥/b) in Eqs. (5), (19) at ` = 𝑄 = 2 GeV analytically continued into
the DGLAP region 𝑥 > b: real part on the left and imaginary part on the right panel. The LO (tree-level),
NLO (one-loop) and NNLO (two-loop) CFs are shown by the black solid, blue dashed and blue dash-dotted
curves. Note, that imaginary part of the LO CF contains a local term ∼ 𝛿(𝑥 − b) (not shown).

the (axial-)vector CF in momentum fraction space at ` = 𝑄 are presented in Eq. (20). Numerical
estimates in Sect. 4 suggest that the two-loop contribution gives rise to a ∼ 10% correction to the
Compton form factor, which is significantly above the projected accuracy at the JLAB 12 GeV
facility and the Electron Ion Collider.
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