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One of the most pressing questions for modern physics is the nature of dark matter (DM). Several
efforts have been made to model this elusive kind of matter. The largest fraction of DM cannot be
made of any of the known particles of the Standard Model (SM). We focus on brane world theory as
a prospective framework for DM candidates beyond the SM of particle physics. The new degrees of
freedom that appear in flexible brane world models, corresponding to brane fluctuations, are called
branons. They behave as weakly interacting massive particles (WIMPs), which are one of the most
favored candidates for DM. We present a multi-target DM search in dwarf spheroidal galaxies for
branon DM annihilation signatures with the ground-based gamma-ray telescope MAGIC leading
to the most constraining branon DM limits in the TeV mass range.
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Multi-target branon dark matter search in dSphs with MAGIC T. Miener

1. Introduction

The nature of dark matter (DM) is still an open question for modern physics. According to
the Planck 2018 results [1], non-baryonic cold DM accounts for 84% of the matter density of the
Universe based on astrophysical and cosmological evidences. Brane-world theory as a prospective
framework for DM candidates [2] proposes massive brane fluctuations (branons) as a natural TeV
DM candidate, since their characteristics match the ones of weakly interacting massive particles
(WIMPs) [3].

Dwarf spheroidal galaxies (dSphs) are preferred targets for indirect DM searches because they
are not expected to host strong conventional gamma-ray emitters that may hinder the detection of a
subdominant DM signal. In addition, they are close by, and have high mass-to-light ratios. Finally,
compared to other very prominent targets for DM searches the Galactic Center (GC) and galaxy
clusters [4, 5], dSphs are spatially less extended. In this work, we are searching for branon dark
matter annihilation signatures in dSphs with the MAGIC telescopes.

2. Branon dark matter

The expected photon flux produced by branon DM annihilation is composed of the astrophysical
factor (J-factor), which depends on both the distance 𝑙 and the DM distribution at the source region
𝜌DM, and the particle physics factor, mainly the differential photon yield per branon annihilation.
It can be expressed from a given solid angle region in the sky, ΔΩ, as

dΦBDM
d𝐸

(⟨𝜎𝑣⟩) =
∫
ΔΩ

𝑑Ω′
∫

l.o.s.
𝑑𝑙 𝜌2

DM(𝑙,Ω′)︸                               ︷︷                               ︸
Astrophysics

· 1
4𝜋

⟨𝜎𝑣⟩
2𝑚2

𝜒

d𝑁BDM
d𝐸︸               ︷︷               ︸

Particle physics

(1)

with
d𝑁BDM

d𝐸
=

𝑛∑︁
𝑖=1

Br𝑖
d𝑁𝑖

d𝐸
, (2)

where ⟨𝜎𝑣⟩ is the thermally-averaged annihilation cross section (our parameter of interest and
therefore the only free parameter in our likelihood analysis of Sec. 4), 𝑚𝜒 is the mass of the branon
DM particle and l.o.s. stands for line-of-sight. The differential photon yields per annihilation into
SM pairs d𝑁𝑖/d𝐸 are taken from the PPPC 4 DM ID distribution [6]. The left panel of Fig. 1 shows
the branon branching ratios Br𝑖 as a function of 𝑚𝜒 [7]. The differential photon yield per branon
annihilation d𝑁BDM/d𝐸 is depicted for a set of DM masses in the right panel of Fig. 1.

3. Dwarf spheroidal galaxies observations with the MAGIC telescopes

The Florian Goebel Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes1
are located at the Roque de los Muchachos Observatory (28.8◦ N, 17.9◦ W) on the Canary Island of
La Palma, Spain. MAGIC consists of two 17-m diameter reflector imaging atmospheric Cherenkov
telescopes (IACTs), which inspect the very-high energy (VHE, ≳ 50 GeV) gamma-ray sky probing
the most extreme astrophysical environments in our universe.

1https://magic.mpp.mpg.de/
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Figure 1: Taken from [7]. Left: The branon branching ratios as a function of 𝑚𝜒 for DM masses from
10 GeV up to 100 TeV. Right: The differential photon yield per branon annihilation d𝑁BDM/d𝐸 (Eq. 2) for
a set of DM masses (from light to dark: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100 TeV).

The MAGIC Collaboration has carried out extensive observations on dSphs in the Northern
Hemisphere throughout the years, motivated by the search for DM signals in these objects. We
include the dSph observations of Segue 1 (158h), Ursa Major II (95h), Draco (52h), and Coma
Berenices (49h) with a total exposure of 354h in our work to align with the combined model
independent DM search by MAGIC in [8]. We are also using the total J-factor and its statistical
uncertainty from Geringer-Sameth et al. [9] (GS15) as [8]. Their corresponding values and its ±1𝜎
uncertainties are listed in Tab. 1 and visualized in Fig. 2.

Name Distance 𝑙, 𝑏 log10 𝐽 Zd 𝑇obs E 𝜃 SLi&Ma
[kpc] [°] [log10 (GeV2cm−5sr)] [°] [h] [TeV] [°] [𝜎]

Coma Berenices 44 241.89, 83.61 19.02+0.37
−0.41 5 − 37 49 0.06 − 100 0.17 −

Draco 76 86.37, 34.72 19.05+0.22
−0.21 29 − 45 52 0.07 − 100 0.22 −

Segue 1 23 220.48, 50.43 19.36+0.32
−0.35 13 − 37 158 0.06 − 100 0.12 −0.5

Ursa Major II 32 152.46, 37.44 19.42+0.44
−0.42 35 − 45 95 0.12 − 100 0.30 −2.1

Table 1: Summary of the dSph properties and observations by the MAGIC telescopes. We report the
heliocentric distance and Galactic coordinates of each dSph, as well as the total J-factor values and its ±1𝜎
uncertainties from GS15 [9] used in the present work. We also report the zenith distance (Zd) range, the
total observation time (𝑇obs), and the energy range (E). We then list the angular radius (𝜃) of the signal
region, the normalization between background and signal regions (𝜏), and the significance of detection
(SLi&Ma) calculated by following Li&Ma [10]. Note that the significance of detection is not reported for
Coma Berenices and Draco in [8], but no gamma-ray excess have been found in any of these sources.

4. Likelihood analysis method

The low-level data of the four dSph observations (see Sec. 3) were reduced by the MAGIC
Collaboration using the standard MAGIC analysis software MARS [11] and published in [8]. We
re-analysed the high-level data products (event lists for gLike; likelihood curves for LklCom) in the
context of brane-world extra-dimensional theories using the open-source analysis software tools [12]
for multi-instrument and multi-target DM searches gLike [13] and LklCom [14].

3
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Figure 2: The total J-factor values and its uncertainties from GS15 [9] for all considered dSphs.

We followed the likelihood analysis scheme proposed by Aleksić, Rico and Martinez in [15],
which is the standard DM analysis framework within the MAGIC Collaboration [8, 16–19]. Our
final joint likelihood function L is a nested product of the binned likelihood function for each dSphs
(𝑁dSphs = 4) and their distinct observational datasets (𝑁obs,𝑘 refers to the number of datasets of
dSph 𝑘) with their corresponding set of instrument response functions (IRFs) caused by different
observational conditions or hardware setup of the instrument. It reads for all datasets D with
nuisance parameters 𝝂 as

L (⟨𝜎𝑣⟩; 𝝂 | D) =
𝑁dSphs∏
𝑘=1

{ 𝑁obs,𝑘∏
𝑙=1

[ 𝑁bins∏
𝑖=1

(
P(𝑠𝑘𝑙𝑖 (⟨𝜎𝑣⟩) + 𝑏𝑘𝑙𝑖 | 𝑁ON,𝑘𝑙𝑖) · P(𝜏𝑘𝑙𝑏𝑘𝑙𝑖 | 𝑁OFF,𝑘𝑙𝑖)

)]
× T𝑘𝑙

(
𝜏𝑘𝑙 | 𝜏o,𝑘𝑙, 𝜎𝜏𝑘𝑙

) }
× J𝑘

(
𝐽𝑘 | 𝐽o,𝑘 , 𝜎log10 𝐽𝑘

)
(3)

where P(𝑥 |𝑁) is the Poisson distribution of mean 𝑥 and measured value 𝑁 , 𝑠𝑘𝑙𝑖 (⟨𝜎𝑣⟩) and 𝑏𝑘𝑙𝑖

are the expected numbers of signal and background events in the 𝑖-th energy bin, respectively, and
𝑁ON,𝑘𝑙𝑖, 𝑁OFF,𝑘𝑙𝑖 are the total number of observed events in a given energy bin 𝑖 of the 𝑙-th distinct
dataset of the 𝑘-th dSph in the signal (ON) and background (OFF) regions, respectively. Besides
𝑏𝑘𝑙𝑖 , the normalization between background and signal regions 𝜏𝑘𝑙, described by the likelihood
function T𝑘𝑙 2, is a nuisance parameter in the analysis [8]. We treat also the J-factors as a nuisance
parameters using the likelihood J𝑘 for the J-factor of the 𝑘-th dSph following [20]. In the absence
of a branon DM signal, upper limits (ULs) on ⟨𝜎𝑣⟩ are set using a test statistic following [20].

2The likelihood function T𝑘𝑙
(
𝜏𝑘𝑙 | 𝜏o,kl, 𝜎𝜏𝑘𝑙

)
of the 𝑙-th distinct dataset of the 𝑘-th dSph is a Gaussian with mean

𝜏o,kl and variance 𝜎2
𝜏𝑘𝑙

, which include statistical and systematics uncertainties. We consider a systematic uncertainty of
𝜎𝜏syst = 1.5% · 𝜏𝑘𝑙 on the estimate of the residual background based on a dedicated performance study of the MAGIC
telescopes [21].

4
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5. Results and Outlook

We present the observational 95% confidence level ULs on the thermally-averaged cross-
section ⟨𝜎𝑣⟩ and on the brane tension 𝑓 (see further details in [7]) for branon DM annihilation
obtained with 354 hours of dSph observations by the MAGIC telescopes (see Fig. 3)). We perform a
multi-target search for branon DM particles of masses between 100 GeV and 100 TeV. As expected
from the no significant gamma-ray excess in the dSph observations by the MAGIC telescopes [8],
our constraints for branon DM annihilation are located within the 68% containment band, which is
consistent with the no-detection scenario.

This work leads to the most constraining branon DM limits in the TeV mass range, superseding
previous constraints by CMS [22] (blue), AMS-02 [23] (orange) and MAGIC limits for Segue1
alone [7, 24] (purple). The prospects of the future CTA [25] (magenta) and SKA [26] (yellow)
are also depicted in Fig. 3. We obtain our strongest limit ⟨𝜎𝑣⟩ ≃ 4.9 × 10−24 cm3s−1 for a
∼ 0.7 TeV branon DM particle mass. We can achieve even more stringent and robust exclusion
limits by adding further dSph observations of the MAGIC telescopes or other gamma-ray [27, 28]
or neutrino telescopes to this analysis scheme.
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Figure 3: 95% confidence level ULs on ⟨𝜎𝑣⟩ (left panel) and on 𝑓 (right panel) for branon DM annihilation
from the combined analysis of 354 hours of dSph observations. See text for more details.
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