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Citizen science games and gamified tasks have shown promise in engaging citizens in scientific 
work through often digitalized version of real-life scientific tasks while producing useful data. 
This work has spurred an increasing interest in investigating how to design such 
interactions to entice players to produce as high quantities of scientifically useful data as 
possible. Player modelling, the computational analysis of player interactions with and within 
games, has been applied to better understand which UI features or particular player 
interactions can best predict player behavior. However, much of this work has relied on 
modelling approaches that exhibit low degrees of explainability, and that rely on large quantities 
of player data. In this paper we present Saturable Dynamic Bayesian Network Models (SDBN), 
a novel player modelling approach that avoids these two issues using a feature activation 
network that quantifies the user’s gradually extending familiarity with the interface. This 
makes our approach usable for more fine-grained design-decisions when building and 
improving citizen science games, and it makes our approach applicable to games with smaller 
numbers of players. We apply our novel method to data collected from approximately 2,000 
players of the citizen science game Quantum Moves 2. Our study shows that the SDBN approach 
can reliably model player drop out down to 10 participants and allows for both bulk and 
individual level insights of how player interactions with and within our game predicts player 
engagement and the quality of consequent data.
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1. Quantity and Quality in Citizen Contributions to CitSci Projects

Citizen science has become a popular approach to collecting data or conducting scientific 
research through the power of the crowd [1]. Despite the growth, however, many citizen science 
projects struggle to achieve the goal of collecting sufficient data for robust scientific research. 
Stated plainly, a core challenge is to generate data of sufficient quantity and quality.

With increasing levels of digitalization in citizen science projects—chiefly, gamified science 
tasks—[2], participant contributions can be tracked and quantified. The quantity of contribution per 
participant in such volunteer based projects tends to have a long-tailed distribution, in which a large 
group of participants contribute leisurely and a small core of participants contribute significantly 
more [3–6]. This difference may in part be attributable to varying levels of expertise, either with 
playing video games in general, with the core scientific content, or both [7, 8] however is not at 
the moment understood in detail. The probability of disengaging is in commercial applications 
often referred to as the “churn rate” [9, 10]. Figure 1 demonstrates the churn rate of Quantum 
Moves 2 [11], a citizen science game analyzed within this work.

A core question in citizen science is, therefore, how do we design games that engage 
players so they contribute larger quantities of data, while supporting them in making 
scientific contributions to these projects of sufficient quality?

To answer this question, citizen science scholars have investigated the efficiency of user 
inter-faces using design experimentation either through natural [12] or deliberate experiments, 
[13] but ideally such considerations should be based on intricate knowledge of individual player 
behavior in specific games [14, 15]. As an example, Gal et al. [14] presented a player model-
based method to displaying motivational messages to users at the optimal moment to increase 
their play-time. They used reinforcement learning on data from Galaxy Zoo, one of the largest 
citizen science platforms. In the video game research literature other sophisticated approaches 
have been explored. For in-stance, the winning team of the IEEE CIG 2017 Game Data Mining 
Competition [16] used deep neural networks to predict the remaining lifetime of each player 
using real world data. In another example, machine learning models predict the churn rate, the 
expected expenses or the fun of the player to adapt the game experience [17, 18].

However, we see a number of problems with current approaches to understand player 
engagement in citizen science games. First, most of the models used in participant modeling 
efforts are neural networks generated using deep or reinforcement learning methods. These 
methods are efficient and can fit a model with little prior knowledge about the subject [19, 20]. 
But they are susceptible to overfitting and spurious effects, and because of their lack of 
explainability this is difficult to detect. Additionally, these models are generally very specific. 
They answer very precise questions and focus on only one parameter that they try to predict, for 
example, when is the best time to display a motivational message. These models cannot easily be 
used for other purposes. Finally, these models are highly dependent on the quantity of data 
available, thus limiting the number of small projects that can use these models.

In this paper, we present a new approach to modelling player interactions in citizen science 
games, a variant of Dynamic Bayesian Network-models [21], that emphasizes explainability 
can be broadly used in many different contexts and does not require large amounts of data in 
order to provide insights into player interactions and engagement. As a case study, we apply it to
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Dynamical modelling of player engagement in a citizen science game

Figure 1: Player churn or total number of active players as a function of the number of games played (n) in 
the citizen science game Quantum Moves 2. The orange trace represents the player retention data (plotted 
on a log scale). The green line demonstrates that the player loss is poorly described by an exponential 
function with a fixed leave probability because there is a significant long-tail of persistent players. The 
stochastic model result is plotted in blue, where the solid line represents the mean and the shaded area the 
25% to 75% quantile.

Quantum Moves 2 (QM2), which along with its predecessor Quantum Moves has been played by 
more than 250,000 citizen scientists worldwide. The scientific topic of QM2 is quantum physics and 
the challenge is to provide solutions to transfer atoms—represented by their quantum mechanical 
wave function—as fast as possible from an initial state to some predefined target state. 
Scientific results have demonstrated that players search the complex landscape differently and 
sometimes more efficiently than traditional algorithms [11]. Participants have been studied 
previously using surveys and interviews [5, 7] and the game design elements of the leaderboard 
investigated in a 10,000+ participant natural experiment [12].

For this study, we focus on one QM2 level, played by more than 2.000 participants. Compared 
to the original, QM2 includes a number of optional UI features (such as replay, ghost function 
and machine optimization of player solutions, see figure 2) designed to assist and enrich the player 
experience. The purpose of this paper is to show that our so-called SDBN model can be used for 
this purpose.

Our main research questions are:
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1. Does SDBN offer an explainable, generalizable approach to explaining churn?

2. Can the insights offered by SDBN help us better design games to increase the quality and
quantity of player-generated data?

To give the reader an understanding of the details of this study, we first introduce our model, 
then present the data that we collected from QM2 and how we analyzed these data with this model. 
Finally, we present results, and discuss how these results can help design citizen science games and 
interfaces that can increase the quality and the quantity of scientific player contributions.

Figure 2: User interface of the game : The player has to move the wave from the right to the left as precisely 
as possible within the time limit. The red rectangles highlight optional UI features designed to help the 
players and keep them engaged. Clicking on the top left graph opens a menu with more optional features.

2. Our Model

As explainability is a primary focus for our approach, we base our model on Dynamic Bayesian
Network-models, a general tool for behavior modelling [21]. A Bayesian Network (BN) is 
a probabilistic causal model represented by a directed acyclic graph (no loops). A Dynamic 
BN (DBN) takes into account the evolution of the system through time. The fundamental question 
that a DBN answers is: to what extent does the occurrence of other events at one point in time 
predict the occurrence of an event at the next point in time. This can help explain how certain 
features or particular player achievements in a game leads certain players to play for longer, or to 
produce better data. Concretely, the nodes of a DBN represent variables of the game system 
and player, either observable quantities, latent factors or hypotheses at a point in time. Each edge 
connects two nodes at time t and t+1 and is associated with conditional dependencies between the 
two nodes.

The crucial, manual step in setting up a DBN is to choose a) the system states that would 
each be represented by nodes in our graph and b) how to represent time. Fundamentally, we were
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Dynamical modelling of player engagement in a citizen science game

interested in understanding what makes players play for longer (generating higher quantities of data) 
and what made players play well (generating data of higher quality). Based on expert knowledge 
of the game mechanics and observations of prominent player behavior, we therefore chose a set of 
15 observables features and no additional latent factors. Eight of these indicate the point in time 
in which a user uses an optional UI feature for the first time. Four were game milestones features 
that represent the players’ progressing scores in the game. Two were special game techniques that 
the authors had observed some players deploying. The final state was the point in time at which the 
player stops playing the game. As time unit, we chose each player’s attempt at the level to study the 
evolution of the player’s achievements and the impact that UI features have on it.

In general DBN-features can take on any range of values and can fluctuate non-monontonically 
in time. This in principle allows for modeling a very rich, granular dynamics but also increases 
data requirements and challenges explainability. We therefore introduce a novel, simplified variant 
saturable DBN (SDBN) in which features can only take on the values 0 or 1 and once activated 
(discovered or achieved) will remain at unity. Rather than attempting to model the actual use 
of the interface elements, this feature activation network explores the user’s gradually extending 
familiarity with the interface.

For implementing the SDBN model, we characterise the player state before and after each game 
trial as an activation vector with Boolean components, Xt defined at each game trial 𝑡 . Then we 
model the probabilities of transitions in the activation vector for the next game trials in the following 
way:

P(Xt+1∥Xt) = 𝑠𝑖𝑔(p + Q ∗ Xt) (1 − Xt) + Xt (1)

where p is a vector describing the probabilities of discovering each feature “by itself” and Q a
matrix defining the conditional probabilities between features. A sigmoid regularizes the resulting
values to represent probabilities P(Xt+1∥Xt) ∈ [0,1]. The additional factors containing Xt ensure
the saturation aspect of our model.

To fit the 15𝑥16 parameters of the model and determine the causal inferences between nodes,
we used stochastic gradient descent with the data collected with cross-entropy as the cost function.
The stability was ensured using 5-fold cross validation and taking the mean of the folds as the final
result.

3. Finding: The DBN can successfully model engagement

As an initial test of our model, we see how well it predicts player churn (i.e., when the 
players play their last game.) As shown in figure 1, the model was able to explain the churn 
rate from the initial 2,000 down to less than 10 participants. This suggests that our 15 features 
have strong explainable power in predicting player churn. In contrast, the best single-parameter 
exponential decay clearly only explains player dropoff over much less than a decade.

Our discovery and achievement probability network also gives insight into why people keep 
playing the game. Indeed, figure 3  s hows t he t ransition m atrix o f t he m odel d emonstrating both 
positive and negative correlations. The two circled dependencies represent examples of causal 
inferences. The bottom one indicates that achieving milestones reduces the chances that the player 
leaves the game just after, and the top one indicates that achieving a milestone increases the chance 
of reaching a better milestone just after.

5
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Dynamical modelling of player engagement in a citizen science game

Figure 3: This matrix shows the influence of one feature on the subsequent activation of another one. A 
blue square represents a strong causal impact and a brown square represent a reverse causal impact.

4. Finding: The DBN exhibits different clusters of volunteers

This general model predicts the mean behavior of players. However it can be extended by 
making the spontaneous (𝑝) and interaction (𝑄) parameters player specific. These are regrouped to 
prevent overfitting in a few (6) fit pa rameters: global interactions with UI or learning and discovery 
of special strategies. These parameters are focused on the links between UI and learning the game. 
This allows us to train an individual model for each player. This method provides us player-specific 
models documenting each player’s specificities.

To better understand the individual SDBN-models, we clustered the players using k-means. 
Figure 4 highlights the very different progression of players. The participants in cluster 4 almost 
immediately use the machine optimization feature and manually achieve the first milestone (5%) 
and quickly advance to the second one (30%), whereas the third (60%) is only achieved after more 
experimentation. Within cluster 0, progress in feature exploration and game achievements is much 
slower. Unlike players in cluster 4, they do however seem to discover the "ghost" feature and soon 
thereafter start achieving game milestones. Surprisingly, when behavior over a longer timescale is 
investigated a significantly larger fraction of the initially slow learners in cluster 0 achieve the highest
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Dynamical modelling of player engagement in a citizen science game

Figure 4: Cluster analysis of player behavior on their 20 first games. Each individual player has been
modelled by a SDBN and their behaviors have been clustered using K-Means. The blue scale is logarithmic
and features not discovered yet are marked in red.

game milestone compared to cluster 4 players. This granular behavioral insight demonstrates the
dramatically different required interface changes or motivational messages required for different
player clusters.

5. Conclusion

In this paper, we presented a novel feature activation model, Saturable Dynamic Bayesian
Networks. The model addresses shortcomings in current citizen science game-player modeling, 
specifically relating to explainability and the necessity for large quantities of data. Applying the 
model to data from approximately 2,000 players of Quantum Moves 2, we show that the model can 
predict both aggregate level data—churn rate across all players—and explain the degree to which the 
discovery of particular gameplay features cause players to play longer and provide better solutions.
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Dynamical modelling of player engagement in a citizen science game

We hope that this model can help towards better understanding how to make sense of player data, 
and how to use this knowledge to design citizen science games that produce more and better data.
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