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Many proposed and on-going experiments require the preliminary knowledge of low-energy
production cross-sections of different quarkonium and/or exotic states in hadronic e.g. in proton-
antiproton collisions, to be able to make estimates to the expected yields, momentum distributions
etc. These are necessary ingredients to simulate the detector systems, and to plan the experiments.
Here, we propose a statistical based model to estimate the low-energy cross sections of some
charmonium, bottomonium, and the X(3872) possible tetraquark state in proton-proton, pion-
proton, and proton-antiproton collisions at a few GeV center-of-mass energies. The X(3872)
cross-sections are calculated, using the assumption that it is a diquark-antidiquark bound state in
the triplet-antitriplet representation, which gave a good match with the available high energy data
in proton-proton collisions at 7 TeV. The estimated low-energy cross sections can be used as inputs
e.g. in transport simulations of heavy-ion collisions, which can be used as event generators for
detector studies, which is an important task during the construction of the detector systems. In
each case the calculated cross sections are compared to the available measured data, giving a good
match between the two.
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1. Introduction

Hadronic cross sections are important ingredients of the non-equilibrium studies of low-energy
heavy-ion collisions, which aim to better understand the structure of the strong interaction, and
the strongly interacting matter, and it is one of the most important areas of research today. With
relativistic transport codes it is possible to study such non-equilibrium processes with a wide range
of energies, from a few hundreds of MeV’s up to a few TeV center-of-mass energies per nucleon. In
the lower energy regime up to a few GeV/nucleon center-of-mass energies, the necessary degrees
of freedoms are the hadrons, therefore the most important inputs of the transport codes are the
elementary hadron+hadron cross sections. In this energy regime a very hot and dense nuclear
matter could be created, which could be used to extract information about the equation of state of
the strongly interacting matter, or to study the vacuum structure of the strong interaction through
the different condensates of quarks and gluons, which could be measured through observing the
mass and width changes of the different vector mesons during the collision processes [1]. To be
able to estimate processes, which are not well measured at such low energies, we have developed
a statistical method, which is able to give reliable estimates to several exclusive, and inclusive
cross sections with or without heavy quarks, and is also capable to be used to describe tetraquark
production with the inclusion of diquarks. To the full description of the model, we refer the reader
to [2–5], where we also have made many estimations to different processes.

2. Model description

The model starts from the assumption, that the cross section of a two body reaction can be
factorized into two terms, which describes the initial dynamics, and the final state hadronization of
the processes as:

𝜎(
√
𝑠) =

( ∫ 2∏
𝑖=1

𝑑3𝑝𝑖𝑅(
√
𝑠, 𝑝1, 𝑝2)

)
×

( ∫ 𝑘

𝑖=1
𝑑3𝑞𝑖𝑤(

√
𝑠, 𝑞1, ..., 𝑞𝑘)

)
, (1)

where 𝑝1, and 𝑝2 are the momenta of the colliding particles,
√
𝑠 is the center-of-mass energy of the

collision, and 𝑞1, . . . , 𝑞𝑘 are the momenta of the outgoing particles. The 𝑅(
√
𝑠, 𝑝1, 𝑝2) function

describes the initial, dynamical evolution of the collision, and is assumed to be described by the
inelastic cross section of the two-body reaction as 𝜎𝐴+𝐵→𝑋

𝐼
(
√
𝑠) =

∫ ∏2
𝑖=1 𝑑

3𝑝𝑖𝑅(
√
𝑠, 𝑝1, 𝑝2),

where 𝜎𝐴+𝐵→𝑋
𝐼

(
√
𝑠) is the inelastic cross section of the reaction 𝐴 + 𝐵 → 𝑋 , and 𝑋 is the

combination of any number and type of hadrons, which is allowed by the conservation laws. The
integral in the second bracket in Eq. (1) then describes the hadronization probability to a k-body
final state. Here, we assume that during the collision a short lived fireball is created with an invariant
mass of

√
𝑠, which could decay into smaller fireballs, with smaller invariant masses, which of course

satisfies the energy conservation. The smaller fireballs could also decay towards to even smaller
fireballs, and at the end of the decay chain, the formed fireballs will hadronize into specific hadronic
final states. The fireball decay chain is described by a simple probabilistic approach, where each
fireball is allowed to decay into smaller fireballs uniformly, if each has at least enough energy to
have hadronized into two neutral pions. The probability of the actual type of hadronic final states
can be specified by calculating the phase space integrals (where for non-stable resonances an extra
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Breit-Wigner factor is also introduced), spin multiplicities, and symmetry factors, the density of
states, and the so-called quark combinatorial factors. The most general form of the hadronization
probability of 𝑘-fireballs can be expressed as:

𝑊𝑘,𝑖1..𝑖𝑘 (𝐸) = 𝑃
𝑓 𝑏

𝑘
(𝐸) 1

𝑍𝑘

1
𝑁𝑖1,..𝑖𝑘 !

∫ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑘∏
𝑎=1

[
𝑑𝑥𝑎 ×

𝑇𝑖𝑎 (𝑥𝑎)∑
𝑗 𝑇𝑗 (𝑥𝑎)

𝛿

( 𝑘∑︁
𝑎=1

𝑥𝑎 − 𝐸

)]
, (2)

where 𝑃
𝑓 𝑏

𝑘
(𝐸) is the probability of the 𝑘-fireball scheme, 𝑁𝑖1,..𝑖𝑘 is the number of fireballs with the

same hadrons in their final states, while 𝑇 (𝑥) = 𝐶𝑄 (𝑥)𝑃𝐻
𝑛 (𝑥) is a function containing the phase

space integrals, Breit-Wigner -, and quark combinatorial factors as:

𝑃𝐻
𝑛 (𝑥) = 𝑃𝑑

𝑛

Φ𝑛 (𝑥, 𝑚1, .., 𝑚𝑛)
𝜌(𝑥) (2𝜋)3(𝑛−1)𝑁𝐼 !

𝑛∏
𝑙=1

(2𝑠𝑙 + 1), (3)

where 𝑥 is the invariant mass of the fireball, 𝑃𝑑
𝑛 is the probability that one get 𝑛 hadrons from one

fireball, Φ𝑛 (𝐸, 𝑚1, .., 𝑚𝑛) is the n-body phase space integral, consisting the Breit-Wigner factors
for resonant particles, 𝜌(𝐸) is the density of states obtained from the statistical Bootstrap, 𝑁𝐼 is a
symmetry factor, and 𝑠𝑙 is the total spin of the 𝑙′𝑡ℎ particle. The remaining factor in Eq. (2) 𝑍𝑘 is an
overall normalization function, where the summation goes for all of the possible processes, which
have the correct quantum numbers. One of the most important ingredient of the model is the 𝐶𝑄 (𝑥)
quark combinatorial factor, which counts down all the possible quark/antiquark combinations, which
could give a specific hadronic final state. To do this, the total number of quarks and antiquarks has
to be estimated for which, simple phase space consideration has been used. To distinct between the
different type of quarks the so-called quark creational probabilities (𝑃𝑖) have been introduced, which
serve as free parameters of the models, and have been fitted by comparing the model calculations
to experimentally measured cross sections. To calculate exotics like tetraquarks, we also have
introduced diquarks to the model. To do this only the quark combinatorial factors, specifically
the quark creational probabilities had to be extended by assuming that the probability to create a
diquark is 𝑃𝑖 𝑗 = 𝑃𝑖𝑃 𝑗 . Knowing the quark creational probabilities for the necessary quarks, the
number distribution for quarks and diquarks can be expressed by a multinomial distribution as:

𝐹 (𝑥, 𝑛𝑖 , 𝑛𝑖 𝑗) =
𝑁 (𝑥)!∏

𝑖 𝑛𝑖!
∏

𝑖 𝑗 𝑛𝑖 𝑗!

∏
𝑖

𝑃
𝑛𝑖
𝑖

∏
𝑖 𝑗

𝑃
𝑛𝑖 𝑗

𝑖 𝑗
, (4)

where 𝑁 (𝑥) is the total number of quarks and antiquarks, 𝑛𝑖 is the number of a specific type of
quark (i=u,d,s,c,b), and 𝑃𝑖 is the quark creational probability of the quark with flavor 𝑖, with the
constraint that the sum of the number of specific type of quarks has to give back the total number of
quarks. The expected number of quarks corresponds to the maximum of the distribution function
if 𝑛𝑖 ≥ 1 and is given by ⟨𝑛𝑖 (𝑥)⟩ = 𝑃𝑖𝑁 (𝑥). For the diquarks 𝑛𝑖 𝑗 means that one take 𝑛𝑖 𝑗 number
of 𝑖 quarks and 𝑗 quarks separately, so the maximum number of diquarks is 𝑁/2 and the expected
number is ⟨𝑛𝑖 𝑗⟩ = 𝑃𝑖𝑃 𝑗𝑁/2.

3. Charmonium, Bottomonium, and Tetraquark cross sections

The statistical model described in the previous section can be readily used to describe inclusive
charmonium and bottomonium production cross sections in proton, antiproton, and pion induced
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Figure 1: Model calculation for the 𝑝𝑝 → 𝐽/Ψ𝑋 , and 𝜋− 𝑝 → 𝐽/Ψ𝑋 inclusive cross sections.

reactions, of which we show some examples in this section. In Fig. 1 the inclusive 𝐽/Ψ production
cross sections are shown in 𝑝𝑝, and in 𝜋−𝑝 reactions, where the model errors, and the existing
measurements are also shown. In Fig. 2 the results for bottomonium production is shown, where
on the left side the inclusive 𝜋−𝑝 → Υ𝑋 , while on the right side the 𝑝𝑝 → Υ𝑋 process can
be seen. In all cases a very good match has been obtained, considering the measurement and
model errors. For the tetraquark production, we have calculated the inclusive production cross
sections of the 𝑋 (3872) possible tetraquark state in 𝑝𝑝, 𝜋−𝑝, and 𝑝𝑝 reactions as well. As the
actual structure of this particle is still unknown it is interesting to compare the calculations to
other models, where e.g. the 𝑋 (3872) is assumed to have a loosely bound molecule, or a closely
bound diquark-antidiquark structure. Here, we assume that the particle is a diquark-antidiquark
bound state, so it can be easily include into the statistical model. The diquarks could be in the
triplet-antitriplet, and sextet-antisextet color representation, for which we had made calculations
with a varying triplet-antitriplet probability (𝑃3 ∈ [0, 1]) and compared the results with a measured
Ψ(2𝑆)/𝑋 (3872) cross section ratio at

√
𝑠 = 7 TeV. This can be followed on the left panel in Fig. 3,

where the two dashed lines shows the upper and lower limits, coming from the uncertainties of the
measurements. It can be seen, that the results are in the determined uncertainty range for almost all
of the 𝑃3 probabilities, so to make further calculations, we have assumed that the diquarks are in the
triplet-antitriplet representation, with 𝑃3 = 1. On the right side in Fig. 3 the low energy inclusive
𝑋 (3872) production cross section estimations can be seen in different reactions, giving the same
low energy hierarchy as what was expected from the charmonium, and bottomonium results.

4. Conclusions

Low energy hadronic cross sections are important inputs of heavy ion transport simulations,
where we could examine the strongly interacting matter in a controlled environment. These
simulations are necessary to better understand the underlying physical processes, which arise
in heavy ion colliding experiments. The statistical method described here is able to give reliable
estimates to many low energy (few GeV center-of-mass energies) hadronic reactions, and could
even be used as an event generator for heavy ion transport codes.

4



P
o
S
(
F
A
I
R
n
e
s
s
2
0
2
2
)
0
0
4

Low-energy charmonium, bottomonium and tetraquark production cross sections from a statistical model
Gábor Balassa

12 14 16 18 20 22 24 26 28 30

E [GeV]

100

101

102

103

-
p

X
[p

b
]

meas.

model

model error

1 1.5 2 2.5 3 3.5 4 4.5 5

Index of meas. point at 29.1 GeV CM energy

5

10

15

20

25

30

p
p
 

X
[p

b
]

data

model

model error

12 14 16 18 20 22 24 26 28 30

E [GeV]

10
-2

10
0

10
2

Figure 2: Bottomonium production cross sections in 𝑝𝑝 and 𝜋− 𝑝 collisions.
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Figure 3: X(3872) production cross sections in 𝑝𝑝, 𝜋− 𝑝, and 𝑝𝑝 collisions.
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