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The discovery of four-quark states attracted a lot of attention from the theoretical as well as the
experimental side. To study their properties from QCD we use a functional framework which
combines (truncated) Dyson-Schwinger and Bethe-Salpeter equations in Landau gauge. This
approach allows us to extract qualitative results for mass spectra, decay widths and wavefunctions
of candidates for bound as well as resonant four-quark states. Furthermore, we can investigate the
possible internal structure of such states. We report on recent developments and results using this
functional framework and give an overview about the current status as well as future developments.
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1. Functional Framework

To study the properties of hadrons we employ a non-perturbative functional framework in
which we combine Dyson-Schwinger equations (DSEs), i.e., the quantum equations of motion,
with hadronic bound state equations, e.g., Bethe-Salpeter equations (BSEs) (see [1] for a detailed
review and references therein). The functional approach has been successfully applied to the meson
and baryon spectrum (see, e.g., [1]), glueballs [2, 3] and also the spectrum of light and heavy-light
four-quark states [4–9].

A BSE can be thought of as an eigenvalue equation

𝜆(𝑃2) Γ = 𝐾𝐺 Γ , (1)

where Γ is the Bethe-Salpeter amplitude (BSA), 𝐾 denotes the interaction kernel and𝐺 are the fully
dressed quark propagators. We have also introduced an eigenvalue 𝜆(𝑃2) which depends on the
hadron momentum 𝑃 squared. Eq. (1) is solved if 𝜆(𝑃2 = −𝑀2) = 1, i.e., the hadron goes on-shell.

In the following we will focus on the properties of four-quark states. Four-quark states are sys-
tems of two quarks and two anti-quarks, i.e., 𝑞𝑞𝑞𝑞. Their exact four-body Bethe-Salpeter equation
contains irreducible two-, three- and four-body interactions. For reasons of complexity, the latter
two have been neglected so far. While on the surface this may be considered an uncontrolled and
potentially severe oversimplification, arguments in favour of the dominance of two-body interac-
tions have been discussed in [4]. We are then left with the system shown in Fig. 1, where we have
three different two-body interaction topologies: two meson-meson and one diquark-antidiquark.
For the two-body interaction kernels, we employ the rainbow-ladder truncation, i.e., the interaction
reduces to exchanges of effective gluons, for details see, e.g., [10, 11]. In recent years there were
some developments to systematically improve the Ansatz for the interaction in the light meson
sector [12, 13].
The four-body BSA for the scalar four-quark state has the following form

Γ(𝑘, 𝑞, 𝑝, 𝑃) =
𝑁∑︁
𝑖=1

𝑓𝑖 (Ω) 𝜏𝑖 (𝑘, 𝑞, 𝑝, 𝑃) ⊗ Γ𝐶 ⊗ Γ𝐹 , (2)

where 𝑘, 𝑞 and 𝑝 are relative momenta between (anti-)quark pairs, each associated with one specific
interaction topology, and 𝑃 is the total momentum of the four-quark state. The 𝑓𝑖 are the dressing
functions of the four-quark state, which depend on a set of nine Lorentz-invariants Ω and 𝜏𝑖 are the
respective basis elements in Dirac space. For the scalar four-quark state we have 𝑁 = 256 basis
elements. Furthermore, there is also a colour and a flavour part, Γ𝐶 and Γ𝐹 respectively. We apply
two different strategies to make this equation more manageable to solve. First, we consider the 16
𝑠-wave tensors, which depend only on 𝑃 but not on the relative momenta and form a Fierz-complete
basis. This approximation has been done in the three-body equation for baryons and it was found to
be reliable to ∼ 10%, which is sufficient for the current purposes. The second strategy is to recast
the momenta 𝑘, 𝑞, 𝑝, 𝑃 into multiplets of the permutation group 𝑆4 [14]. One can then identify a
singlet 𝑆0, a doublet 𝐷 and two triplets 𝑇0, 𝑇1. It has been shown in [4], that the dependence of the
dressing functions 𝑓𝑖 on the triplet variables is weak and can be neglected. The other two, however,
are important: the 𝑆0-variable carries the scale, whereas 𝐷 restricts the phase space. It is also in
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Figure 1: Four-quark BSE with two-body interactions. The green half-circles denote the BSA and the blue
boxes indicate interactions between two quarks. There are three interaction topologies: two meson-meson
(𝑞𝑞)(𝑞𝑞) topologies and one a diquark-antidiquark (𝑞𝑞)(𝑞𝑞) topology (shown).

the doublet-variables 𝐷 that intermediate 2-body pole structures arise dynamically. As a further
approximation we use a physically motivated basis, i.e., we assume that the amplitude is dominated
either by tensor structures corresponding to two physical channels identified by the decay products
with lowest mass or by the diquark channels with lowest (unphysical) mass. Thus, we have three
dressing functions 𝑓M1 , 𝑓M2 , 𝑓 D for the two meson and the diquark topology and can now put in
the pole structures by hand, i.e., we make the replacement 𝑓𝑖 (𝑆0, 𝐷) → 𝑓𝑖 (𝑆0) · 𝑃𝑎𝑏 · 𝑃𝑐𝑑 , where
𝑃𝑎𝑏/𝑐𝑑 denote 2-body poles in certain topologies and 𝑎, 𝑏, 𝑐, 𝑑 is the quark index. In this physical
basis, the dressing functions 𝑓𝑖 only depend on the singlet 𝑆0. A more detailed description can be
found in [7]. Note, there is also a related BSE approach in which one assumes dominant two-body
forces and can then further simplify the four-quark BSE. This approach will be termed two-body
approach and deals with effective meson-meson and diquark-antidiquark degrees of freedom, which
interact via quark exchange, see [7, 9] for details.

2. Results

In previous works, the masses 𝑀2 = −𝑃2 of the light and heavy-light four-quark states were
extracted in the four-body and the two-body approaches, see [4–6, 9]. As most hadrons are
resonances one strives to extract the real part of the mass plus the decay width of the hadrons from
the theory framework to compare with the experimental values. In principle, it is straight forward
(but numerically tedious) to solve the BSE, Eq. (1), for such complex 𝑃2. In the rest frame of
the hadron this corresponds to 𝑃𝜇 = (𝑖𝑀 + Γ/2) 𝑒𝜇4 and the complex eigenvalue has to fulfil two
conditions: Re(𝜆(𝑃2)) = 1 and Im(𝜆(𝑃2)) = 0.

There are however two caveats. With the techniques available so far, the computation is only
possible in the first (unphysical) Riemann sheet. As we are interested in resonances, which are
identified by poles lying in the (physical) second Riemann sheet, we need to perform an analytic
continuation to extract the physical results. The second caveat is, that it is sometimes not straight
forward to reach the 𝑃2 such that 𝜆(𝑃2 = −𝑀2) = 1 is fulfilled. This is because of the intermediate
particle poles, which introduce branch cuts into the equation. Fortunately, in many cases path
deformation techniques are available to circumvent the problem. These techniques have been
explored for conventional mesons, see, e.g., [7] and references therein, and also in the context of
four-quark states in the two-body approach [8]. In this paper, the authors used a combination of
path deformation and analytic continuation in the two-body approach to compute the BSE in the
complex plane above the threshold, see left plot in Fig. 2. It shows the real and imaginary part of
the eigenvalue 𝜆(𝑃2) for the 𝜎 meson and one can clearly see a branch cut opening in the imaginary
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Figure 2: Left: Real and Imaginary part of the eigenvalue 𝜆(𝑄2) for the 𝜎 in the two-body formalism. Here
the total momentum is denoted by 𝑄2. The black line on the bottom indicates the branch cut along the real
axis. Figure taken from [8]. Middle: Preliminary result for the imaginary part of 𝜆 for the 𝜎 in the four-body
formalism. The red line is the branch cut along the real axis and the green box is the particle threshold. Right:
Preliminary result showing the dressing functions for the 𝑎0 as a function of the singlet variable 𝑆0. From the
magnitude, we find that the meson contributions are dominant and the diquark contribution is subleading.

part of 𝜆(𝑄2) above a certain decay threshold, i.e., 𝜋𝜋 for the 𝜎. Extrapolating beyond the cut, they
extracted the masses plus the decay widths of the light scalar nonet particles 𝜎, 𝑎0, 𝑓0. The results
match reasonably well with experimental values (see [8] for a full discussion).

The path deformation technique, however, has not yet been exploited in the four-body approach.
This is work in progress. On the right in Fig. 2, we show a preliminary result for the imaginary
part of the eigenvalue of the 𝜎 obtained in the four-body formalism. We have identified the branch
cut opening above the two-pion threshold, similar to the two-body approach, and are now in the
process of adapting the path deformation techniques to the problem at hand.

In the regions of 𝑃2 which are directly assessable, we are now also in a position to address
the internal structure of the four-quark states directly via a comparison of the size of different
contributions to the Bethe-Salpeter amplitude, i.e. the shape and magnitude of the dressing functions
𝑓M1 , 𝑓M2 , 𝑓 D . On the right in Fig. 2 we plotted the dressing functions for the example case of the
𝑎0 as functions of 𝑆0, i.e., the overall momentum scale. We find a clear dominance of the meson
dressing functions over the diquark dressing function. This is completely in line with the findings
from the two-body approach, [8], where this information was only indirectly available.

Closing remarks Since the DSE/BSE framework in principle makes no assumptions on the
internal structure of four-quark states (i.e., e.g., diquark clustering vs. meson clustering), it is a
very interesting tool to study the dynamical effects which generate these structures. For all states
studied so far, the (heavy-light or light-light) meson-meson components dominate and diquark
components are subleading. In recent time, the framework evolved to a level, which makes the
extraction of decay widths possible [8], at least in the two-body approach. The generalisation of
the corresponding techniques to the four-body approach is work in progress and may lead to more
refined statements about the internal structure of four-quark states.
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