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1. Introduction

Both the experimental and theoretical exploration of the phase diagram of strong-interaction
matter with its conjectured critical endpoint (CEP) is one of the leading research goals of contemporary
high-energy physics [1–3]. The equation of state (EoS)—i.e., pressure, entropy density, and energy
density—as a function of temperature and chemical potential holds the desired information to
understand the various phases of QCD and is encoded in the thermodynamic potential.

The phase structure of QCD at vanishing chemical potential is well understood thanks to
ab-initio lattice-QCD calculations [4, 5]. At nonzero chemical potential, however, these are severely
hampered by the sign problem and complementary approaches are necessary. The nonperturbative
functional framework of Dyson–Schwinger equations (DSEs) is well-suited for that, and significant
progress has been achieved in recent years; see, e.g., Refs. [6–12] and Ref. [13] for a review.

Unfortunately, obtaining the EoS from DSEs is extremely difficult. Generally speaking, the
starting point for the derivation of every DSE is the first derivative of the thermodynamic potential,
and an integration is necessary to get hold of the potential itself. Alas, this integration is only
possible for certain truncations. In this contribution, a truncation-independent method to compute
thermodynamic quantities from DSEs is summarized that we put forward in Ref. [9].

2. Thermodynamics from the quark condensate

At nonzero temperature 𝑇 and quark chemical potential 𝜇, all thermodynamic information of
QCD is encoded in its thermodynamic potential

Ω(𝑇, 𝜇) = −𝑇
𝑉

logZ(𝑇, 𝜇) , (1)

where 𝑉 is the volume of the system and Z denotes the grand-canonical partition function.1 The
EoS follows from standard thermodynamic relations [14]. For example, the pressure is given by
𝑃(𝑇, 𝜇) = −(Ω(𝑇, 𝜇) −Ω(0, 0)) and the entropy density reads 𝑠(𝑇, 𝜇) = 𝜕𝑃(𝑇, 𝜇)/𝜕𝑇 .

Though in principle fixed, the current quark mass 𝑚 can also be treated as an external, variable
quantity: Ω = Ω(𝑇, 𝜇;𝑚). In the action, it appears as the source for the quark-field bilinear 𝜓𝜓,
and the quark condensate is thus given by ⟨𝜓𝜓⟩(𝑇, 𝜇;𝑚) = 𝜕Ω(𝑇, 𝜇;𝑚)/𝜕𝑚. This relation can
be inverted, i.e., integrated with respect to the current quark mass, and allows us to express the
difference of the thermodynamic potential evaluated at two arbitrary (unphysical) current quark
masses 𝑚1, 𝑚2 (w.l.o.g., 𝑚1 < 𝑚2) as an integral over the quark condensate, viz.

Ω(𝑇, 𝜇, 𝑚2) −Ω(𝑇, 𝜇, 𝑚1) =
∫ 𝑚2

𝑚1

d𝑚′ ⟨𝜓𝜓⟩(𝑇, 𝜇;𝑚′) . (2)

This equation is of little practical use because both Ω and ⟨𝜓𝜓⟩ are divergent. The divergence is
contained in the vacuum contribution to the thermodynamic potential, i.e., independent of temperature
and chemical potential. Thus, a derivative of Eq. (2) with respect to 𝑇 yields a divergence-free
equation that relates the entropy density to the quark condensate according to

𝑠(𝑇, 𝜇;𝑚2) − 𝑠(𝑇, 𝜇;𝑚1) = −
∫ 𝑚2

𝑚1

d𝑚′ 𝜕⟨𝜓𝜓⟩
𝜕𝑇

(𝑇, 𝜇;𝑚′) . (3)

1For the sake of simplicity, here we consider only one (light) flavor.
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Figure 1: DSEs for the quark (left) and gluon (right) propagators. The former (latter) are denoted by solid
(curly) lines while a large black dot indicates nonperturbative quantities. In the gluon DSE, the gray dot
represents all diagrams with no explicit quark content. Feynman diagrams were drawn with JaxoDraw [16].

Finally, we set the lower integration limit to the physical current quark mass, 𝑚1 = 𝑚, and send
the upper one to infinity, 𝑚2 → ∞. An infinitely heavy quark becomes static and freezes out of the
system, and the entropy density is then simply the one of pure-gluonic Yang–Mills gauge theory,
𝑠(𝑇, 𝜇;𝑚2 → ∞) = 𝑠gauge(𝑇), which is known to a high precision from the lattice [15]. We thus
arrive at

𝑠(𝑇, 𝜇) = 𝑠gauge(𝑇) +
∫ ∞

𝑚

d𝑚′ 𝜕⟨𝜓𝜓⟩
𝜕𝑇

(𝑇, 𝜇;𝑚′) , (4)

which establishes a general relation between the entropy density and the quark condensate. We
emphasize that Eq. (4) is obtained without any approximation and is therefore exact. Only the
temperature derivative of the quark condensate as a function of the current quark mass (at fixed 𝑇 and
𝜇) is needed to compute the entropy density. This renders Eq. (4) quite general and not restricted to
a specific approach, though it is particularly useful within the DSE framework where computing the
thermodynamic potential is extremely difficult, while obtaining ⟨𝜓𝜓⟩(𝑇, 𝜇;𝑚) is straightforward.

3. Dyson–Schwinger equations

The quark condensate—sole input of Eq. (4)—is obtained from the nonperturbative quark
propagator 𝑆(𝑇, 𝜇;𝑚) through ⟨𝜓𝜓⟩(𝑇, 𝜇;𝑚) = Tr 𝑆(𝑇, 𝜇;𝑚), where the trace is understood in the
functional sense over flavor, color, Dirac, and momentum space d.o.f. We obtain 𝑆 by solving a
set of truncated DSEs that takes the backcoupling of quarks onto the gluon explicitly into account,
which allows for a consistent mass and flavor dependence of all results. Equally important, the gluon
becomes sensitive to the chiral dynamics of the quarks. This system has been studied extensively in
other works (see, e.g., Refs. [6, 11, 13] and references therein) and predicts a second-order CEP at
temperature 𝑇CEP ≈ 119 MeV and baryon chemical potential 𝜇CEP

B ≈ 495 MeV.
In more detail, the nonperturbative quark and gluon propagators each obey a DSE that is shown

diagrammatically in Fig. 1. Both contain higher-order correlation functions, e.g., the nonperturbative
quark-gluon vertex, which satisfy their own DSEs. To cope with this infinite tower of coupled
equations, we truncate as follows: (i) in the gluon DSE, all diagrams with no explicit quark content
are replaced by fits to quenched, temperature-dependent lattice results; (ii) for the nonperturbative
quark-gluon vertex, an ansatz is employed whose infrared dynamics are guided by a Slavnov–Taylor
identity for the full vertex while its behavior in the ultraviolet is fixed by demanding the correct
running of the propagators at large perturbative momentum scales. The quark-loop diagram is
evaluated explicitly, thereby unquenching the gluon.

This system is solved numerically for 2 + 1 flavors, which yields the nonperturbative quark
and unquenched gluon propagators at arbitrary 𝑇 and 𝜇B. For the sake of brevity, we refrain from
showing explicit expressions and refer the reader to Refs. [6, 13] for details.
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Figure 2: Upper left: relative error between the NJL entropy density obtained from the quark condensate
through Eq. (4) (𝑠𝜓) and directly from the thermodynamic potential (𝑠Ω). Upper right: entropy density
at 𝜇B = 0 in comparison to lattice results [4, 5]. Lower left and right: pressure and interaction measure,
respectively, at different chemical potentials up to the CEP. All diagrams are adapted from Ref. [9].

4. Results and discussion

Proof of principle In order to demonstrate the viability of the method described in Sec. 2, we
use a two-flavor Nambu–Jona-Lasinio (NJL) model in mean-field approximation [17]. It has the
advantage that the thermodynamic potential can be computed explicitly and is given in a closed
form. We are therefore in a position to compare the NJL entropy density obtained directly from the
thermodynamic potential with the one resulting from Eq. (4).2

We find that both results cannot be distinguished by the eye, and the relative error between them
is shown in the upper left diagram of Fig. 2: it is smaller than 0.05% across the whole temperature
range. This shows that our method is reliable and works well.

EoS from DSEs Now, we summarize our thermodynamic results, which are discussed in detail in
Ref. [9], obtained using the method described in Sec. 2 with quark-condensate data extracted from
the DSE framework of Sec. 3.

Our result for the entropy density—the direct outcome of our method—at vanishing chemical
potential is shown in the upper right diagram of Fig. 2 together with continuum-extrapolated lattice
results [4, 5]. For 𝑇 ≲ 170 MeV, it is monotonically increasing and, though with a slight overshoot,

2Here, 𝑠gauge = 0 because gluons are no active d.o.f. in the NJL model.

4



P
o
S
(
F
A
I
R
n
e
s
s
2
0
2
2
)
0
2
4

QCD’s equation of state from Dyson–Schwinger equations Philipp Isserstedt

in satisfying agreement with the lattice data. At higher temperatures, we observe an unphysical,
nonmonotonous behavior. The reason for that can be traced back to our vertex ansatz: it overestimates
the strength of the quark-gluon interaction at high temperatures and/or chemical potentials, which
should become continuously weaker due to thermal screening. Addressing that issue is not the
aim of this work, neither the delivery of a high-quality EoS; though we would like to note that our
setup yields satisfying results in the temperature range 100–160 MeV, i.e., below and around the
pseudocritical chiral transition temperature. More important, the key message is that the method of
Sec. 2 allows us to obtain the entropy density from an elaborate DSE framework that does not admit
an explicit calculation of the thermodynamic potential.

Having the entropy density 𝑠(𝑇, 0) at vanishing chemical potential at hand, the pressure follows
thermodynamically consistent from

𝑃(𝑇, 𝜇B) = 𝑃(𝑇0, 0) +
∫ 𝑇

𝑇0

d𝑇 ′ 𝑠(𝑇 ′, 0) +
∫ 𝜇B

0
d𝜇′𝑛(𝑇, 𝜇′) , (5)

where the baryon number density 𝑛(𝑇, 𝜇B) is calculated using the framework of Ref. [6], and
𝑃(𝑇0, 0)/𝑇 4

0 = 0.242 at 𝑇0 = 110 MeV [4]. Our results for the pressure at different chemical
potentials ranging from zero to the CEP value 𝜇CEP

B = 495 MeV as functions of 𝑇 are depicted in the
lower left diagram of Fig. 2. The pressure gets larger with increasing chemical potential across the
whole temperature range, although the increase is less noticeable at low temperatures. Its inflection
point with temperature can be used to define the pseudocritical chiral transition temperature in
the crossover region of the phase diagram and is compatible with other definitions like the peak
position of the chiral susceptibility or the inflection point of the quark condensate. Approaching
the CEP, a kink develops around the corresponding (chemical-potential dependent) pseudocritical
chiral transition temperature, which is most pronounced close and at the CEP. Beyond that point, the
pressure rises with a steep slope compared to low chemical potentials.

Since the entropy density is used to obtain the pressure, the latter inherits the erroneous
high-temperature behavior from the former. This manifests in the fact that our results for the pressure
saturate at too low temperatures and (well) below the Stefan–Boltzmann limit. However, the very
same key message as stated above in case of the entropy density applies here.

Finally, our results for the interaction measure I = 𝜀 − 3𝑃 are shown in the lower right diagram
of Fig. 2, where 𝜀 denotes the energy density, which is obtained by a Legendre transform of the
pressure. At small chemical potentials, the interaction measure is shape consistent with lattice results
and experiences as a function of temperature a strong increase from intermediate 𝜇B toward 𝜇CEP

B .
Close to and at the CEP, the slope becomes (near-)infinite at the corresponding critical temperature,
and the peaklike structure with a large magnitude indicates that nonperturbative effects are manifest
in this region of the QCD phase diagram.

Closing remarks We summarized a truncation-independent method to compute the EoS within
nonperturbative functional approaches. At its heart lies an exact relation between the entropy density
and the quark condensate. The method is particularly useful in the context of DSEs because it allows
for the calculation of thermodynamic quantities within truncations that do not admit an explicit
calculation of the thermodynamic potential—all current state-of-the-art DSE calculations [6–8, 10]
are of that kind and future ones will certainly be like that, too.
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