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Quenched QCD at zero baryonic chemical potential undergoes a first-order deconfinement phase
transition at a critical temperature 𝑇𝑐, which is related to the spontaneous breaking of the global
center symmetry. The center symmetry is broken explicitly by including dynamical quarks, which
weaken the first-order phase transition for decreasing quark masses. At a certain critical quark
mass, which corresponds to the 𝑍 (2)-critical point, the first-order phase transition turns into a
smooth crossover. We investigate the 𝑍 (2)-critical quark mass for 𝑁f = 2 staggered fermions
on 𝑁𝜏 = 8, 10 lattices, where larger 𝑁𝜏 correspond to finer lattices. Monte-Carlo simulations
are performed for several quark mass values and aspect ratios in order to extrapolate to the
thermodynamic limit. We present final results for 𝑁𝜏 = 8 and preliminary results for 𝑁𝜏 = 10 for
the critical mass, which are obtained from fitting to a kurtosis finite size scaling formula of the
absolute value of the Polyakov loop.
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1. Introduction

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction, whose
elementary degrees of freedom are the quarks and gluons. At low temperatures, the coupling
strength between the quarks and gluons is large, confining them to bound hadron states. At high
temperatures, the coupling strength is weak and the constituents are expected to form the so-called
quark-gluon plasma. The various forms of matter are depicted in the QCD phase diagram as a
function of temperature and baryonic chemical potential. The hadronic phase in the QCD phase
diagram is separated from the quark-gluon plasma by a transition line, whose nature has to be
determined by first-principle calculations and experiments. This work uses the approach of lattice
QCD Monte-Carlo simulations to determine the nature of the deconfinement transition. However,
a severe sign problem prohibits the application of Monte-Carlo importance sampling methods to
strongly interacting thermodynamic systems with non-zero real chemical potential 𝜇. Therefore,
studying the theory as a function of the remaining parameters (temperature, quark masses and
purely imaginary chemical potential), also for unphysical values, becomes more important.
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Figure 1: The Columbia plot for the
second-order scenario of the chiral phase
transition [1].

Investigating the QCD thermal transition at 𝜇 = 0 as a
function of the three lightest quark masses, the degenerate
𝑢- and 𝑑-quarks and the 𝑠-quark, leads to the Columbia plot
of QCD (see fig. 1). At physical quark masses the QCD
thermal transition is an analytic, smooth crossover [2].
In contrast to the light quark mass region, where strong
evidence exists, that there is no first-order region in the
continuum limit [1], the first-order region in the heavy
mass region is known to persist from investigations of
pure gauge theory [3].

This work focuses on the deconfinement transition in
the heavy quark mass regime, which is related to the spon-
taneous breaking of the of the 𝑍 (3) center symmetry. In
the limit of infinite quark masses the 𝑍 (3) center symme-
try of QCD is exact. Including heavy, dynamical quarks
breaks the center symmetry explicitly, such that decreasing quark masses weaken the first-order
phase transition. At the 𝑍 (2) second-order boundary it turns into a smooth, analytic crossover.

This 𝑍 (2)-critical point has been investigated for 𝑁f = 2 quark flavors and three different lattice
spacings employing the Wilson fermion action [4]. The goal is to locate the same 𝑍 (2)-critical
point in the continuum limit employing the unimproved staggered fermion action. Continuing
the work from ref. [5], we present results for the critical quark mass for two different lattice
spacings, that are final for the coarser lattice and preliminary for the finer lattice. The results will
provide a first-principles benchmark for effective theories, that are not limited by the sign problem
at non-zero real chemical potential. These effective theories include effective lattice theories
obtained from the hopping parameter expansion [6–8] and effective Polyakov loop theories in the
continuum [9, 10]. Furthermore, investigating QCD for heavy quarks offers the opportunity to
study the interplay between dynamical screening, which happens in vaccuum as well as in medium,
and Debye screening, which only happens at finite temperature.
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2. Simulation Parameters

To perform Monte Carlo simulations, a discretized form of the continuum QCD action on a
Euclidean 3+1D lattice with dimensions 𝑁3

𝜎×𝑁𝜏 is used. For the gauge sector, the standard Wilson
gauge action is used, introducing the inverse gauge coupling 𝛽 as a parameter. For the fermion sector,
the staggered fermion action depends on the quark mass parameter 𝑎𝑚. The detailed formulations
of the staggered fermion and Wilson gauge action can be found in ref. [11]. 𝛽(𝑎) implicitly tunes the
lattice spacing 𝑎. Here, it is used to also tune the temperature 𝑇 = 1

𝑎 (𝛽)𝑁𝜏
. In order to approach the

continuum limit, 𝑁𝜏 is increased while𝑇 stays constant. We perform simulations at 𝑁𝜏 = 8, 10. For
the thermodynamic limit, five different aspect ratios 𝐿𝑇 = 𝑁𝜎/𝑁𝜏 ∈ {4, 5, 6, 7, 8} are simulated.
Localizing the transition point requires to simulate at 2 to 4 𝛽-values around the pseudo-critical 𝛽pc.
The quark mass 𝑎𝑚 is tuned around the critical mass 𝑎𝑚c at the 𝑍 (2)-critical point, simulating 5 to
6 different values. After a sufficient amount of thermalization steps, 4 independent Markov chains
are produced for each set of parameters to increase statistics.

The RHMC algorithm is employed, which is implemented by CL2QCD, an open source, Open-CL
based lattice QCD code [12]. Its executable rhmc is run on the GPU-clusters L-CSC at GSI in
Darmstadt and on the Goethe-HLR at the Center for Scientific Computing in Frankfurt. The bash
tool BaHaMAS is used to submit and monitor those huge amounts of simulations efficiently [13].

3. Analysis of the Deconfinement Transition

The order parameter associated with the deconfinement transition is the expectation value of
the Polyakov loop 𝐿, averaged over the spatial lattice sites,

𝐿 =
1
𝑁3

𝜎

∑︁
𝒏

1
3

Tr

[
𝑁𝜏−1∏
𝑛4=0

𝑈4(𝒏, 𝑛4)
]
. (1)

In order to localize the deconfinement transition and determine its order, we analyze the skewness,
𝐵3, and the kurtosis, 𝐵4, of the norm of the Polyakov loop, which are the third and fourth standardized
moments. The definition of the standardized moments of the norm of the Polyakov loop is given by

𝐵𝑛 =
⟨(|𝐿 | − ⟨|𝐿 |⟩)𝑛⟩〈( |𝐿 | − ⟨|𝐿 |⟩)2〉𝑛/2 . (2)

The symmetry condition of the distribution of the Polyakov loop 𝐵3(𝛽pc) = 0 determines the
pseudo-critical 𝛽pc. In the infinite volume limit 𝐵4(𝛽pc) assumes universal values that are specific
to the order of the transition: 𝐵4(𝛽pc) = 1 for a first-order phase transition, 𝐵4(𝛽pc) = 3 for a
crossover and 𝐵4(𝛽c) = 1.604(1) [14] for a 𝑍 (2) second-order phase transition in three dimensions.
The coarse sampling of the simulated 𝛽 values requires the interpolation of the data for the skewness
and the kurtosis using the multiple histogram reweighting method [15]. Good estimates for 𝛽pc and
𝐵4(𝛽pc) can be extracted from the reweighted data.

Since the measured values for 𝐵4(𝛽pc, 𝑁𝜎 , 𝑎𝑚) are volume dependent, the finite size scaling
formula

𝐵4(𝛽pc, 𝑁𝜎 , 𝑎𝑚) =
(
1.604 + 𝐵𝑥 + O

(
𝑥2
))

·
(
1 + 𝐶𝑁

𝑦𝑡−𝑦ℎ
𝜎 + O

(
𝑁

2(𝑦𝑡−𝑦ℎ )
𝜎

))
(3)
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(b) Best kurtosis fit for 𝑁𝜏=10 (preliminary).
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Figure 2: Kurtosis data and fits for 𝑁𝜏 = 8, 10. The data points are shifted due to readability. The colored
lines show the combined fit, indicating the corresponding volume by the color. The dashed line indicates the
infinite volume kurtosis value for the 𝑍 (2) second-order transition. The vertical black line and the grey band
localize the critical mass and its error.

relates those values to the infinite volume kurtosis value of 1.604 with constants 𝐵,𝐶 [16]. The
scaling variable 𝑥 =

(
1
𝑎𝑚 − 1

𝑎𝑚c

)
𝑁1/𝜈

𝜎 and the correction term 𝐶𝑁
𝑦𝑡−𝑦ℎ
𝜎 depend on the known

𝑍 (2)-critical exponents 𝑦𝑡 = 1/𝜈 = 1.5870(10) and 𝑦ℎ = 2.4818(3) [17]. For sufficiently large
volumes the correction term can be neglected. By fitting equation (3) to the 𝐵4(𝛽pc, 𝑁𝜎 , 𝑎𝑚) data
for a certain 𝑁𝜏 , the critical mass 𝑎𝑚c can be extracted as a fit parameter.

4. Numerical Results
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Figure 3: Comparison with the results from Wil-
son fermions [4]. The staggered value for 𝑚𝑍 (2)

𝜋 is
preliminary for 𝑎𝑚=0.35.

The best kurtosis fits for 𝑁𝜏 = 8, 10 are
shown in fig. 2, where in both cases the correc-
tion term from equation (3) is relevant. The effect
is pairwise different crossing points of the kurto-
sis lines for different volumes, that are shifted
upwards with respect to the infinite volume kur-
tosis crossing point (crossing of the black solid
and black dashed line). It can be observed, that
the error bars on the kurtosis points for 𝑁𝜏 = 10
are larger than for 𝑁𝜏 = 8. Explanations are
significantly larger autocorrelation times for the
larger lattices and low statistics for the larger 𝑁𝜎

for 𝑁𝜏 = 10. The large 𝑄-parameter for the fit
quality and the large error on the critical mass
are a consequence of the large error bars. With
increasing statistics this issue will disappear.

To compare the results, the scale is set via the 𝑤0 scale [18] based on the Wilson flow [19].
The measurement of the pion mass in physical units allows a comparison with results from Wilson
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fermions [4], which can be seen in fig. 3. The error bars represent the error from the pion mass
measurement. The fit error on 𝑎𝑚c, which is not included, is significantly larger. The pion mass
in lattice units for 𝑁𝜏 = 8 is 𝑎𝑚𝑍 (2)

𝜋 = 1.79918(9) and for 𝑁𝜏 = 10 it is 𝑎𝑚𝑍 (2)
𝜋 = 1.38124(11),

implying that the pion, represented by its Compton wavelength, is not resolved by the lattice.
In future, the statistics for 𝑁𝜏 = 10 will increase with the currently running simulations, leading

to a more reliable result for the critical mass. For a continuum extrapolation, simulations on finer
lattices are required, making it more difficult to obtain results with the same precision due to larger
lattices and autocorrelation times. The discretization effects implied by the large pion masses in
lattice units also show the necessity to simulate on finer lattices.
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