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1. Introduction

The phase diagram of QCD is a major field of investigation, from experiment and theory alike.
A large body of knowledge has been gathered, that has helped paint a picture of the behavior of QCD
matter at finite temperature and density. It is now known that the transition between confined and
deconfined matter is a smooth crossover at around T ∼ 155 − 160 MeV [1–3], and it is suggested
by several model calculations [4–6] that the transition becomes first order at higher densities.
The thermodynamics of the theory in the perturbative regime, namely at very large temperature
and/or density, has also been described with good precision by means of resummed perturbative
expansions [7]. In addition, the existence of exotic phases has been proposed at large density and
low temperature [8]. From an experimental point of view, heavy-ion collisions are the best-suited
tool to investigate QCD matter in different conditions. By varying the collision energy, different
baryon chemical potentials can be reached in the system, allowing for a controlled exploration of the
phase diagram. Comparisons of theoretical calculations to experimental measurements of particle
yields and their event-by-event fluctuations have made it possible to locate in the phase diagram the
so-called chemical freeze-out [9–11].

Despite this large volume of knowledge, ab initio information on QCD thermodynamics is
in fact – strictly speaking – still limited to vanishing density and to the perturbative regime.
Currently, first principle methods include perturbation theory, functional methods such as functional
renormalization group (FRG) [6] andDyson-Schwinger equations (DSE) [5], and lattice simulations.

Lattice simulations represent the primary approach to QCD thermodynamics, especially in the
vicinity of the QCD transition temperature, where the coupling is strong. The lattice discretization
of the euclidean theory is a natural tool for the study of equilibrium properties of QCD matter.
Given sufficient computational resources, the lattice formulation provides a way to numerically
solve the theory. In a few words, the lattice discretized theory allows one to calculate path integrals
of the form:

Z
[
U, ψ̄, ψ

]
=

∫
DUDψ̄Dψ e−SG [U,ψ̄,ψ]−SF [U,ψ̄,ψ] , (1)

where U are the gluon fields, ψ̄, ψ are the fermion fields, and SG, SF are the gauge and fermion
actions, respectively. The fermion fields can be integrated out explicitly, and the expectation value
of an observable Ô is then: 〈

Ô
〉
=

1
Z

∫
DU Ô det M[U] e−SG [U] . (2)

These integrals are estimated on the lattice by making use of importance sampling. Instead of
summing over all possible field configurations, a (much smaller) pool of configurations is generated
with the correct probability, which is in fact the factor det M[U] e−SG [U]. The main limitation of
this approach in the study of QCD thermodynamics is the so-called fermion sign problem. When a
chemical potential is introduced, the determinant det M[U] becomes complex, and cannot serve as
a probability factor any longer, thus preventing the use of importance sampling, and rendering the
calculations unfeasible.

Several methods have been devised to circumvent the sign problem and obtained results at
finite chemical potential. Methods that directly deliver results at finite density include reweighting
techniques [12–14], the complex Langevin equation [15, 16] and Lefschetz thimbles [17]. However,
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Figure 1: Left: values and errors for the κ2 and κ4 by different collaborations. Right: Transition line
as a function of the baryon chemical potential, with and without including the next-to-leading term in the
expansion. Figure from Ref. [3].

these are not yet capable of producing results on large lattices. Most results at finite density come
from indirect methods, such as Taylor expansion around zero chemical potential [18–20], and
analytic continuation from imaginary chemical potentials, where there is no sign problem [3, 21–
24].

2. Transition line

Determing the line in the phase diagram where the chiral/deconfinement transition occurs is
important both for fundamental reasons, and because of its use in modeling of heavy-ion collisions.
The transition line is usually defined as an expansion around µB = 0:

Tc(µB)

Tc(µB = 0)
= 1 + κ2

(
µB

Tc(µB)

)2
+ κ4

(
µB

Tc(µB)

)4
+ O(µ6

B) , (3)

with the curvature and hyper-curvature coefficients κ2, κ4 completely determining the transition
line, together with the zero-density transition temperature Tc(µB = 0). Results for the curvature
parameter κ2 have been produced in recent years by several collaborations, both resorting to Taylor
expansions and imaginary chemical potential. The first determination of κ4 was by the HotQCD
collaboration [2], which found a value compatible with zero, though with a sizeable error. This
result was obtained purely with simulations at vanishing chemical potential.

In order to determine these coefficients with high precision, it is advantageous to make use
of simulations at imaginary chemical potential. Because of the smallness of quark masses at the
physical point, the chiral condensate

〈
ψ̄ψ

〉
serves as a good order parameter for the QCD transition.

Both the chiral condensate and the chiral susceptibility χ have been utilized to determine the
transition temperature [23]:〈

ψ̄ψ
〉
=

T
V
∂ ln Z
∂mud

, χ =
T
V
∂2 ln Z
∂m2

ud

. (4)

As functions of the temperature, the chiral condensate has an inflection point at the transition
temperature, while the susceptibility has a peak. In Ref. [3], by considering the susceptibility as a
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function of the condensate χ(
〈
ψ̄ψ

〉
), the transition temperature was determined for each simulated

value of the chemical potential Tc(µB), on lattices with Nτ = 8, 10, 12, 16 timeslices. Then, a
combined fit in 1/N2

τ and µ̂2
B 1 yielded the desired quantities as fit parameters. The final results

reached an unprecedented level of precision, as shown in the left panel of Fig.1:

Tc(µB = 0) = 158.0(0.6) MeV κ2 = 0.0153(18) κ4 = 0.00032(67) . (5)

With these results, the transition line can be drawn in the QCD phase diagram with relatively
small error bars up until µB ≈ 300 MeV, as can be seen in the right panel of Fig. 1.

3. Equation of state

Like the transition line, the equation of state of QCD at finite density is of crucial importance,
both on fundamental grounds, as well as because it provides the basic information on the behavior of
matter that is needed in modeling, most notably in the case of hydrodynamic simulations of heavy-
ion collisions. The Taylor method has been largely employed to determine the equation of state at
finite density, with coefficients up to order O(µ8

B) available from the lattice [18, 20]. However, the
expansion constructed from such coefficients presents unphysical behavior at chemical potentials
µ̂B > 2 − 2.5, likely because the constant-temperature extrapolation crosses the transition line at
some µ̂B > 0.

In Refs. [25, 26], a newly devised scheme was utilized to extrapolate the equation of state to
an unprecedentedly large chemical potential of µ̂B = 3.5. The starting point is that, in the vicinity
of the transition temperature, many observables obey a relation of the form:

F(T, µ̂B) = F(T ′, 0) , T ′ = T
(
1 + κF2 (T)µ̂

2
B + κ

F
4 (T)µ̂

4
B + O(µ̂

6
B)

)
, (6)

whereby the µ̂B-dependence of the observable F(T, µ̂B) is entirely described by the parameters
κ2(T), κ4(T). These are similar in nature to those in Eq. (3), which describe the µ̂B-dependence of
the pseudocritical temperature Tc.

Thanks to simulations at imaginary chemical potential, for a given observable F it is sufficient
to determine the temperature T ′ satisfying Eq.(6) for each simulated value of µ̂B, on each lattice,
at each available temperature T . This provides a function T ′(T, µ̂2

B, 1/N
2
τ ), which can be fitted

to determine the coefficients κFn (T), temperature-by-temperature. The same Eq.(6) can then be
used at real chemical potential to reconstruct the observable F(T, µ̂B ∈ R). This was done to
determine thermodynamic quantities at finite chemical potential in Ref. [25] for the case with
µ̂Q = µ̂S = 0, and in Ref. [26] for the case of strangeness neutrality nS = 0, relevant for heavy-ion
collision phenomenology. The baryon density (left) and pressure (right) in both cases are shown for
chemical potentials up to µ̂B = 3.5 in Fig. 2. Notably, even at such a large chemical potential there
is no trace of unphysical behavior in any of the thermodynamic quantities, and the errors remain
under control.

1We use the following notation for the dimensionless chemical potentials: µ̂i = µi/T .
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Figure 2: Baryon density and pressure up to µ̂B = 3.5, in the cases without (lighter shades) and with (darker
shades) strangeness neutrality.
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