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We construct a new analytic model for the description of the gravitational wave (GW) emission in
the post-merger phase of binary neutron star (BNS) mergers. The model consists of exponentially
decaying sinusoidal functions, attributed to the various oscillation modes, quasi-linear combination
tones, or non-linear features that appear in the post-merger phase. We consider a time dependence
of the main post-merger frequency peak which is described by a two-segment linear expression.
The effectiveness of the model is assessed, in terms of the fitting factor, along a sequence of
equal-mass simulations of varying total binary mass. We identify new spectral features, appearing
in high-mass configurations, originating from a non-linear coupling between the quasi-radial
oscillation and antipodal tidal deformations. The model achieves high fitting factors, and so
can be used for the parameter estimation of detections in upcoming searches with aLIGO+ and
aVirgo+, or with future detectors such as Einstein Telescope, Cosmic Explorer, or with high-
frequency detectors.

FAIR next generation scientists - 7th Edition Workshop (FAIRness2022)
23-27 May 2022
Paralia (Pieria, Greece)

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:t.soultanis@gsi.de
mailto:a.bauswein@gsi.de
mailto:niksterg@auth.gr
https://pos.sissa.it/


P
o
S
(
F
A
I
R
n
e
s
s
2
0
2
2
)
0
5
7

Analytic model for the gravitational wave emission from neutron star merger remnants Theodoros
Soultanis

1. Introduction

There are already two GW events where the sources were identified as BNS mergers, GW170817
and [1] and GW190425 [2]. The detection of GWs from the inspiral phase of GW170817 led to
new constraints on the neutron star equation of state (EOS) [1, 3] (see [4, 5] for recent reviews).
Further constraints are expected by combining information from a larger number of detections in the
future [6–10]. The post-merger phase in GW170817 could not be measured, since the sensitivity of
aLIGO and aVirgo detectors was not sufficient [1, 3, 11]. Nevertheless, such detections are likely
to be possible in the future with upgraded [12], with dedicated high-frequency [13–17] or with
third-generation [18, 19] detectors.

Gravitational wave detections of the post-merger phase rely on robust and sophisticated data
analysis techniques. One approach is to use so-called matched-filtering schemes, which require
faithful GW post-merger template banks. In recent years, several GW template models have been
introduced, in the time domain [20–26] or frequency domain [27–30]. Reference [31] introduced an
analytic model in the time domain, which consists of a combination of three exponentially decaying
sinusoids, corresponding to the most significant frequency components ( 𝑓peak, 𝑓spiral, 𝑓2−0, see
below) in the GW post-merger signal, which correlate with the binary’s properties. The authors
of [24] introduced an analytic model that incorporates exponentially damped sinusoids (as in [31])
but employs linearly time-dependent frequency components. In our work, we provide an extension
to [31] by also including the high-frequency 𝑓2+0 combination tone [32], and a time dependence of
the dominant frequency 𝑓peak. We perform a sequence of simulations with increasing binary mass,
and propose an analytic expression for the time evolution of 𝑓peak informed by spectrograms of the
post-merger GW signal.

2. Methods

We use the Einstein Toolkit [33] to carry out three-dimensional fully general relativistic
simulations of binary neutron star mergers. More specifically, we consider a sequence of equal-mass
binaries with increasing total binary mass. We use the MPA1 [34] EOS model, which is compatible
with current observational constraints [35, 36]. We simulate eight BNS configurations with 𝑀tot =

2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1 𝑀⊙ and note that none of these configurations collapses to a
black-hole (BH) during the simulated time of up to 25 ms after merging. We also note that the
configuration with the highest mass, namely the model with 𝑀tot = 3.1 𝑀⊙, is close to the threshold
binary mass for prompt BH formation 𝑀thres. More information about the numerical setup of these
simulations can be found in [37] and references therein.

3. Spectral analysis of the post-merger GW emission

The fundamental quadrupolar oscillation mode produces the dominant frequency component,
denoted by 𝑓peak or 𝑓2, in the GW post-merger signal (see [5, 20, 31, 32] and references therein).
The frequency 𝑓peak correlates with the size of the remnant and so, encodes information about the
high-density regime of the EOS. As the system evolves and redistribution of angular momentum
occurs, combined with the losses from GW radiation, the frequency 𝑓peak may shift to lower or
higher frequencies.
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Figure 1: Effective GW spectrum ℎeff,+ ( 𝑓 ) for the mass sequence. Colored dashed vertical lines indicate
the frequency peaks 𝑓peak (cyan), 𝑓spiral (yellow), 𝑓2−0 (green), 𝑓2+0 (orange), 𝑓spiral−0 (purple). Shaded areas
show the corresponding frequency ranges. The gray curves correspond to the design sensitivity Advanced
LIGO [38] and of the Einstein Telescope [39]. Figure taken from [37].

To understand the frequency evolution of 𝑓peak, we compute the spectrograms of the strain
𝑟 · ℎ+(𝑡) using a wavelet-based scheme [40] for all the simulated models in the mass sequence.
From the spectrograms, we extract the time-dependent 𝑓peak, denoted by 𝑓peak(𝑡). We find that for
each model, 𝑓peak(𝑡) can be modeled by an analytic 2-segment piecewise function given by

𝑓
analytic
peak (𝑡) =

{
Zdrift · 𝑡 + 𝑓peak,0 for 𝑡 ≤ 𝑡∗
𝑓peak(𝑡∗) for 𝑡 > 𝑡∗

. (1)

The analytic function of 𝑓peak(𝑡) consists of two phases: a) a term of linear drift; b) and a constant
𝑓peak. For every configuration, we perform a fit on the extracted 𝑓peak(𝑡) using Eq. (1). Thus, we
obtain the parameters Zdrift, 𝑡∗, 𝑓peak,0, which describe and quantify the frequency evolution of the
quadrupolar mode (see [37] for more details).

Figure 1 displays the effective GW spectra ℎeff,+( 𝑓 ), defined as ℎeff,+( 𝑓 ) = 𝑓 · ℎ̃+( 𝑓 ) where
ℎ̃+( 𝑓 ) is the Fourier transform of ℎ+(𝑡), for all the models in the sequence of simulations. As shown
in Fig. 1, for every model, the frequency peak 𝑓peak (indicated by cyan color) is not symmetric.
It exhibits an one-sided and broad distribution, which is explained by a time-dependent 𝑓peak(𝑡).
Using the aforementioned fits of 𝑓peak(𝑡) extracted from spectrograms, we find that the frequency
range of 𝑓peak(𝑡) (cyan-shaded area) is in good agreement with the one-sided peak of the dominant
mode.

The GW spectra, as can be seen in Fig. 1, contain several secondary components in addition
to the dominant 𝑓peak mode. A non-linear coupling between 𝑓peak and the quasi-radial oscillation
mode 𝑓0, explains two of those, namely 𝑓2−0 and 𝑓2+0 (see [32]). Another feature, denoted by 𝑓spiral,
originates from the formation of tidal antipodal bulges in the remnant [41]. We have identified these
features in the all the GW spectra considered in this work (see Fig. 1 and [37] for more details). We
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Figure 2: Left panel: Post-merger GW signal 𝑟 · ℎ+ (𝑡) from the simulation (black) and analytic model fit
for the configuration with 𝑀tot = 2.5 𝑀⊙ . Right panel: Effective post-merger GW spectra ℎeff,+ ( 𝑓 ) for the
simulation (black), for the analytic model ℎFit

+ (𝑡) (orange) and for the semi-analytic model [37] (cyan) for the
configuration with 𝑀tot = 2.5 𝑀⊙ . Colored boxes indicate the respective fitting factors FFs. Figures taken
from [37].

confirm a smooth transition of the spectral features as the total mass increases (see also [41]). In
high-mass configurations, we find a new coupling between the 𝑓spiral component and the quasi-radial
oscillation 𝑓0 which explains the frequency components at roughly 𝑓spiral±0 ≈ 𝑓spiral ± 𝑓0 (see purple
dashed lines in Fig. 1 and [37]).

4. Analytic model

Furthermore, using the aforementioned spectral analysis, we construct an analytic model for
the post-merger GW emission that consists of exponentially decaying sinusoidal functions. Our
model is an extension of [31], which included fixed 𝑓peak, 𝑓spiral, and 𝑓2−0, and of [24], which
incorporated a linear time evolution of 𝑓peak(𝑡). In our work, we use Eq. (1) to model the time
evolution of 𝑓peak(𝑡), and also include the frequency component 𝑓2+0. This model can be easily
modified to include additional frequency components, such as 𝑓spiral−0. The analytic model reads

ℎ+(𝑡) = 𝐴peak 𝑒 (−𝑡/𝜏peak ) · sin(𝜙peak(𝑡))
+ 𝐴spiral 𝑒

(−𝑡/𝜏spiral ) · sin(2𝜋 𝑓spiral · 𝑡 + 𝜙spiral)
+ 𝐴2−0 𝑒 (−𝑡/𝜏2−0 ) · sin(2𝜋 𝑓2−0 · 𝑡 + 𝜙2−0)
+ 𝐴2+0 𝑒 (−𝑡/𝜏2+0 ) · sin(2𝜋 𝑓2+0 · 𝑡 + 𝜙2+0), (2)

where the phase of the 𝑓peak component, 𝜙peak(𝑡), is chosen so the frequency 𝑓peak(𝑡) = 1
2𝜋

𝑑𝜙peak (𝑡 )
𝑑𝑡

features a time dependence as in Eq. (1). More information on the description of the analytic model,
its implementation, and its parameters can be found in [37].
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We perform fits using the analytic model for all the configurations of the mass sequence.
Figure 2 displays the fit for the model with total binary mass 𝑀tot = 2.5 𝑀⊙ in the time domain
(left panel) and frequency domain (right panel). There is a good agreement between the simulation
signal and the analytic model. The time-dependent description of 𝑓peak(𝑡) is crucial for ensuring
that the signal is well described in the early and late phase of the evolution. Moreover, the one-sided
structure of 𝑓peak is reproduced remarkably well (see Fig. 2).

The quality of the fits is evaluated using the noise-weighted fitting factor (FF) defined in Eq. (7)
and (8) in [37]. For most models, the analytic model achieves FF > 0.95, where FF = 1 corresponds
to a perfect match. Compared to many models in the literature, those are considered good FFs.
Furthermore, we consider simplified analytic models that incorporate fewer secondary components
(see [37] for definitions). The performance of the model significantly deteriorates if none of the
secondary features is included (see Fig. 14 in [37]). Finally, we note that, although not presented in
this work, all parameters of the analytic model follow empirical laws (some less tight than others)
as a function of the total binary mass 𝑀tot (see [37]).

5. Conclusions

We perform a spectral analysis of the GW post-merger emission for a mass sequence of
binary neutron star mergers, and then introduce an analytic model for the GW signal, which uses
exponentially decaying sinusoids. We find that the strongest spectral feature, 𝑓peak, shows a time
evolution described by an analytic 2-segment piecewise function. We identified a new coupling
mechanism, between 𝑓spiral and 𝑓0, which explains additional frequency peaks in the GW spectrum.
The analytic model performs well, achieving a good agreement with the simulations (FFs > 0.95)
for the majority of the models. Finally, we find that faithful post-merger GW templates should
include several frequency components.
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