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In this talk, I explained the usage of deep learning paradigm into inverse problems solving in high
energy nuclear physics, focusing on studies about QCD matter in extreme conditions. To allow for
efficient inverse problem solving, well-developed physical priors would be helpful in the solving
procedure. Specifically, I introduced two examples with two different strategies involved: one is
about QCD transition type identification in heavy ion collisions using supervised learning, where
the physics prior is embedded in the training data generated by state-of-the-art model simulations;
the other is about effective in-medium heavy quark potential reconstruction based upon lattice
QCD data for Bottomonium mass and width, here the prior is manifested inside our devised
approach to couple deep neural network represented potential with the Schrödinger equations.
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1. Introduction

QCD predicts that normal nuclear matter under extreme conditions (high temperature or
density) would turn to a new state of matter – the quark gluon plasma (QGP). It’s still an popular
yet unresolved topic in high energy and nuclear physics to understand the properties of such hot
and dense QCD matter. The understanding of extreme QCD matter properties is also relevant to
cosmology study, since the whole universe lied in the QGP state a few microseconds after the
Big-Bang. Terrestrially a way to explore this new state of nuclear matter in laboratory is Heavy ion
collisions (HIC) experiment[1]. At vanishing or small baryon density, the first principle lattice QCD
studies show that the normal hadronic matter will smoothly become QGP in cross over manner along
with increasing temperature[2]. However, when it comes to finite density region, the QCD phase
diagram remains challenging since the involved sign-problem in lattice QCD sector[3], and we
have to resort to experiment exploration or other effective theory. Since the involved complexities,
data- and computation-intensive features for many of the related studies, new paradigm from deep
learning can provide us efficient power-assistance in tackling some of the calculation barrier.

In this talk I take two examples to demonstrate the deep learning based paradigm for inverse
problem solving in the exploration of QCD matter in extreme conditions, and conclude the involved
strategies for general inverse problems we may encounter.

2. Example 1: identifying hot matter EoS from collision experiment

The first example is about recognizing QCD matter bulk properties from heavy ion collision
experiments using supervised learning. The heavy ion collisions provide unique chance on the earth
to potentially create and study the extreme state of QCD matter, where the formed QGP however
can only exist transiently in early stage of the collision. Due to the fast expansion and cooling down,
the “cooked” hot and dense “soup”, QGP, will then quickly experience confinement transition.
Therefore in experiment what can only be resolved are those finally emitted hadrons or their decay
products, with their identify and momentum information can be detected. There we have no direct
access to the probably formed QGP state in early time. Furthermore, theoretically we have many
uncertainties to be involved in even the state-of-the-art models of heavy ion collision simulation, e.g.,
initial fluctuations, hot matter’s bulk and transport coefficients (e.g., shear or bulk viscosity), freeze-
out procedure, later stage hadronic scattering setup, etc. From model simulations it’s shown that
these different physics factors can have entangled influence on different experimental observables,
like particle spectra, yields or their anisotropic collective flows. The conventional way in extracting
the involved physics parameters usually rely on trial and error in bringing model simulations with
guesstimate of those physical parameters to confront experimental data. It remains challenging
to efficiently disentangle different factors and reveal the fundamental physics from the final state
measurements in experiments.

In Ref[4] we made an exploratory study to use state-of-the-art deep learning algorithms to
directly connect the QCD bulk properties and final state raw information from heavy ion collisions.
The evolution of hot and dense QCD matter formed in heavy ion collisions can be well described
by 2nd-order dissipative hydrodynamics. The event-by-event relativistic hydrodynamic modelling
package, CLVisc [5], is deployed to generate final state pion’s spectra in heavy ion collisions, and
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being implemented different equation of states especially different QCD transition type (cross over,
or first order) embedded. With the prepared training data, convolutional neural network (CNN)
based model is developed to take the final state spectra as input and trained to predict the class
identity of the QCD transition in the used EoS in the corresponding collision event. For the testing
we generated two groups of data-set, one from iEBE-VISHNU [6] event-by-event hydrodynamic
simulation with MC-Glauber initial condition, the other still from CLVisc simulation with totally
different IP-Glasma-like initial condition. In all the involved data set generation, different set up for
𝜂/𝑠, 𝜏0 and freeze-out temperature are implemented to introduce diversity and hopefully make the
learned mapping more robust. We showed that the trained CNN gives high prediction accuracies
- on average larger than 95% - in the testing stage, which is independent of the used initial
condition and robust against shear viscosity and other set-ups. We further deepened this strategy
by including more realistic consideration then, for example to take into account the afterburner
hadronic rescattering, to consider non-equilibrium phase transition, and develop point-net based
models to confront the realistic detector readout (hits or tracks of the particles).

3. Example 2: reconstruct in-medium HQ interaction from LQCD data

The second example is about decoding physics of the QCD medium effects on Bottomonium[7]
based on lattice QCD measurements. Specifically we investigated the effective heavy quark potential
from lattice QCD measured in-medium spectroscopy (mass and width) for Bottomonium, to whom
the suppression of production rates in heavy ion collisions has long been taken as a smoking-gun for
the QGP formation[8, 9]. Indeed, generally the heavy quarkonium provide a well-calibrated “QCD
Force”, to whom the vacuum properties can be reproduced accurately with a Cornell-like potential
as baseline for further spot medium modifications. Because of the large mass and relatively small
velocity of heavy quarks, potential descriptions within Schrödinger equation are often employed.
When it is put inside the QGP medium, first the Color screening effects can happen to weaken the
interaction between the two heavy quarks. Furthermore, which is also demonstrated more and more
in recent effective field theory studies [10], the interaction potential for the heavy quark bound state
can also develop an imaginary part manifested as finite width.

Most of the phenomenology modelling of quarkonium production in HIC all call for knowledge
of their in-medium potential to be taken as input. Theoretically, only at very high temperature we
have guidance from perturbative QCD calculation based on Hard-Thermal Loop (HTL) for the
understanding of in-medium heavy quark potential. Recently lattice QCD released the newly
calculation of Bottomonium mass and width at different temperatures [11]. We found that the
existing HTL potential on the market can not reproduce these lattice results by varying the screening
mass in these expressions. Therefore a model-independent method to reconstruct the heavy quark
in-medium potential from the lattice measured spectroscopy is in urgent need.

We introduce two deep neural networks (DNN) to represent the complex-valued heavy quark
potential (one for the real part and the other for the imaginary part), and couple them to the
solving of the Schrödinger equation to convert the potential into in-medium mass and thermal
widths of Bottomonium. These outputs can thus be compared to the lattice results to further guide
the tuning on potential to well describe the data. In evaluating the derivative of the objective
with respect to potential, the Hellmann-Feynman theorem can be applied where the needed wave
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function is obtained in the forward Schrödinger equation solving procedure. Then gradient based
optimization is performed using the evaluated derivatives. After closure tests to validate the method,
we reconstructed the temperature and distance dependent potential which reproduce simultaneously
the mass and thermal width from lattice QCD data, with the corresponding 𝜒2-per-data-point to
be 16.5/30, both the mass and thermal width got simultaneous reproduction. Further, the uncertainty
being associated with the reconstructed potential is quantified using Bayesian perspective.

4. Summary: Inverse Problem solving strategies with Deep Learning

Let’s summarize technically the above introduced two projects in general manner. There are
actually many challenging inverse problems in nuclear physics and also other research areas, where,
the forward modeling is straightforward and achievable, while the corresponding inverse process
is implicit and might hindered from direct derivation or evaluation, see Fig. 1. Like the above
introduced examples, that, it’s challenging to inverse the heavy ion collision process to infer the hot
matter EoS or inverse the Schrödinger system to reconstruct heavy quark in-medium potential. Some
other examples see, e.g., inferring neutron star equation of state from their mass-radius astronomy
observations[12], reconstructing spectral function based on Euclidean correlator estimation from
Monte Carlo simulation[13], identifying CME in heavy ion collisions[14].

Figure 1: A schematic plot of inverse problems with direct forward models but implicit inverse processes.

With deep learning paradigm, we devised two different strategies in solving such inverse
problems from supervised and unsupervised learning perspectives, respectively, where physics
priors are also implemented in different manners.

1. The first is supervised learning by preparing training data-set from the forward modeling,
with different target parameters values varying and their corresponding observables simulated.
Then the direct inverse mapping from observables to the utilized physics parameters can be
learned in big-data sense. In Ref.[4, 12, 15, 16] we showed this strategy can well bridge the
collision experiment to theory in exploring the involved physics for extreme QCD matter.

2. The second approach applies differentiable programming strategy to perform variation on
the target physics parameters (or continuous functions) using gradient-based guidance for the
forward modeling. Meanwhile, the target physics can be represented by a deep neural network
(DNN) to introduce unbiased but flexible enough parameterization. The objective of the
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inference is similar to the conventional 𝜒2 fitting, thus the difference between the output from
forward modeling and the real measurements weighted by observable uncertainties. Using
automatic differentiation or linear response analysis it is achievable to evaluate the derivative
of the objective with respect to every parameters in the target physics representation, and the
optimization will then be possible via gradient descent. Alternatively, heuristic algorithms
or Markov-chain Monte Carlo can be employed as well for the inference process.
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