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1. Introduction

One of the prime goals of many heavy-ion collision experiments is to verify the existence and
determine the location of the putative critical endpoint (CEP) in the phase diagram of QCD. However,
the hot and dense QCD matter formed in these experiments is only finite in spatial extent, which
depends, e.g., on the size of the colliding ions and the centrality of the collision. As a consequence, it
serves as an important cross-check between theory and experiment to analyse potential dependences
of the experimental signatures on this finite volume in theoretical calculations. To this end, it is
especially interesting to investigate the fluctuations of conserved charges such as the baryon number.

In the following, we summarize our findings for the QCD phase diagram in a finite volume
obtained from Dyson–Schwinger equations (DSEs) as found in Ref. [1]. Additionally, we present
very recent results from Ref. [2] for the finite-volume baryon number fluctuations around the CEP in
the same framework.

2. Dyson–Schwinger Equations

For all following investigations, the main quantity of interest is the nonperturbative quark
propagator 𝑆 𝑓 of quark flavour 𝑓 ∈ {u/d, s} – i.e., a 2 + 1 flavour setup – at temperature 𝑇 and quark
chemical potential 𝜇 𝑓 . It is calculated using DSEs which are the quantum equations of motion for the
correlation functions of a quantum field theory. While in principle not requiring any approximations,
they imply an infinite tower of coupled equations that has to be truncated for practical calculations.

We use a truncation that has been used extensively for investigations of the QCD phase diagram
in the past (see, e.g., our recent works in Refs. [1–6]). That is, we solve the DSEs for the quark
and gluon propagators using a model ansatz for the quark–gluon vertex. For the gluon, we employ
quenched lattice data and take unquenching effects into account by calculating the quark loop
explicitly. For the sake of brevity, we refer the reader to the review [7] and references therein for
explicit expressions and more details.

3. Finite-Volume Framework

In order to specify a three-dimensional finite-volume framework, we need to fix both a shape
and the boundary conditions of the volume. A mathematically feasible choice is a cube with edge
length 𝐿 and antiperiodic/periodic spatial boundary conditions (ABC/PBC). As a consequence, each
component in momentum space can only assume discrete values of the spatial Matsubara modes,

𝜔𝐿
𝑛 =

π

𝐿
×
{

2𝑛 for PBC ,
2𝑛 + 1 for ABC ,

𝑛 ∈ Z , (1)

and all momentum integrals in our DSEs become sums, which is the central relation of our setup:∫
d3𝑞

(2π)3 𝐾 ( ®𝑞) → 1
𝐿3

∑︁
®𝑛∈Z3

𝐾 ( ®𝑞 ®𝑛) , with ®𝑞 ®𝑛 :=
3∑︁
𝑖=1

𝜔𝐿
𝑛𝑖
®𝑒𝑖 , (2)

for a generic integrand 𝐾 . For practical calculations, however, more intricacies have to be taken care
of which is described in detail in Ref. [1].
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Figure 1: Finite-volume effects on the QCD phase diagram for antiperiodic (left) and periodic (right) boundary
conditions and different box sizes. Here, we show the crossover lines and locations of the CEPs (symbols).

4. Results

QCD Phase Diagram We start our investigation of the QCD phase diagram with the volume
dependence of crossover line and CEP as performed in Ref. [1]. To this end, we employ the quark
condensate as the order parameter for chiral symmetry breaking which in our setup reads

⟨𝜓𝜓⟩ 𝑓 ∼ − 𝑇
𝐿3

∑︁
𝜔𝑚

∑︁
®𝑛∈Z3

Tr
[
𝑆 𝑓 (𝜔𝑚 + i𝜇 𝑓 , ®𝑞 ®𝑛)

]
, (3)

where 𝜔𝑚 are the temporal Matsubara frequencies introduced by the temperature. For any
nonvanishing bare quark mass, the condensate is divergent and needs to be regularized. To this end,
we define the subtracted condensate, Δus := ⟨𝜓𝜓⟩u − (𝑚u/𝑚s)⟨𝜓𝜓⟩s. The pseudocritical temperature
of the chiral crossover transition is in our case defined as the inflection point of Δus with respect to
temperature, while the CEP is the point where the crossover becomes second order.

In Figure 1, we show our findings for the QCD phase diagram for both boundary conditions
and systems sizes between 𝐿 = 3 fm and 𝐿 = 8 fm with 𝐿 → ∞ as a reference. We find a consistent
infinite-volume limit, i.e., the 𝐿 = 8 fm results are almost indistinguishable from the 𝐿 → ∞ ones.
Visible volume effects start to appear below 𝐿 ≲ 4 fm, while for larger system sizes, the results
are very close to one another and basically identical for both boundary conditions. In general, the
crossover lines move towards lower temperatures for decreasing system sizes. Except for PBC and
𝐿 = 3 fm, the CEPs also tend to move in direction of higher chemical potentials.

Baryon Number Fluctuations Next, we turn to the analysis of baryon number fluctuations around
the CEP as we did in Ref. [2]. Our starting point are the quark number fluctuations,

𝜒uds
𝑖 𝑗𝑘 = − 1

𝑇4−(𝑖+ 𝑗+𝑘 )
𝜕𝑖+ 𝑗+𝑘Ω

𝜕𝜇𝑖u𝜕𝜇
𝑗

d 𝜕𝜇
𝑘
s
, (4)

which can be related to the ones for the conserved charges baryon number (B), electrical charge (Q)
and strangeness (S). As a consequence, the corresponding fluctuations 𝜒BQS

𝑖 𝑗𝑘
can be expressed as

linear combinations of quark number fluctuations; see Ref. [2] for details.
Baryon number fluctuations are an interesting quantity to study for a number of reasons. For

instance, they are rather sensitive to and show signatures of phase transitions and the CEP, and can be
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Figure 2: Second order baryon number fluctuations (top row) and skewness ratio (bottom row) against
normalized temperature for antiperiodic (left) and periodic (right) boundary conditions in different box sizes
𝐿. All results are obtained at the critical chemical potential for the respective system size 𝜇 = 𝜇CEP (𝐿).

related to the moments of the net-baryon distribution accessible in experiments, e.g., 𝜒B
3 /𝜒B

2 = 𝑆B𝜎B,
𝜒B

4 /𝜒B
2 = 𝜅B𝜎

2
B, ... Additonally, the fluctuations themselves explicitly depend on the system volume

while their ratios are expected not to. For more information on fluctuations, see the review [8].
While the QCD grand potential Ω is inaccessible with DSEs, we can obtain the quark number

fluctuations by means of derivatives of the quark number densities 𝑛 𝑓 from the quark propagator,

𝑛 𝑓 = − 𝜕Ω

𝜕𝜇 𝑓

∼ − 𝑇
𝐿3

∑︁
𝜔𝑚

∑︁
®𝑛∈Z3

Tr
[
𝛾4𝑆 𝑓 (𝜔𝑛 + i𝜇 𝑓 , ®𝑞 ®𝑛)

]
. (5)

In numerical calculations, this expression for the quark number density is divergent and needs to be
regularized. In our finite-volume framework, this process is somewhat elaborate which is why we
refer the reader to Ref. [2] for details.

In Figure 2, we display our results1 for both the second order baryon number fluctuations (top
row) and the skewness ratio (bottom row) around the CEP for both boundary conditions and system
sizes between 𝐿 = 2.5 fm and 𝐿 = 8 fm with 𝐿 → ∞ for comparison. The main result we find is
that the baryon number fluctuations themselves show visible volume effects – especially for ABC –
while the ratios are indeed basically independent of the system size. This implies that not only the
explicit volume dependence in the ratios cancels but also the implicit one.

1For better visibility, we display the inverse hyperbolic sine (arsinh), which resembles a logarithmic plot in both
positive and negative direction.
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