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1. Introduction

Using X-rays for imaging and tomography of optically opaque objects dated back to the famous
invention of Wilhelm Rontgen in 1895. Multimodal (MM) radiographic imaging and tomography
(RadIT) combines several different forms or energies of ionizing radiation such as X-rays, y-rays,
neutrons, energetic electrons, protons and others, which can potentially yield more information
about an object than by using a monochromatic (mono-energetic) photons (particles) alone as the
source of illumination.

The technical challenges and opportunities for MM RadIT can be summarized in Figure 1.
Additional information may be found in [1]. The physics framework of radiation-matter interactions
is mostly complete for all practical purposes. Recent advances in high-intensity radiation sources
such as synchrotrons, X-ray free-electron lasers, high-current low-emittance charged particle accel-
erators, laser-driven sources open door to MM RadIT. One of the optimization problems in MM
RadIT is to obtain as high temporal, spatial resolution of an object as possible, with a sufficiently
large field of view, and at a certain radiation dose to minimize radiation damage of the object.
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Figure 1: A holistic approach to MM RadIT optimization includes at least five branches of effort: Fundamen-
tal physics of radiation-interaction with matter (PHY), radiation sources (SRCE), detectors (DETR), methods
to modulate the radiation field (METH) and data handling (DATA). The fundamental physics principles of
MM RadIT are well established. Some challenges and opportunities for SRCE, DETR, METH and DATA
are listed above for each branch.

Below, we first describe the recent progress in ultrafast Complementary Metal Oxide Semicon-
ductor (CMOS) pixelated sensor design and prototyping, followed by the use of neural networks
for noise emulation in X-ray imaging, and the demonstration of sub-pixel resolution in neutron
detection. Follow-on work includes CMOS image sensor fabrication and extension of the neural
networks to different types of particles or photons, and different noise environment. Our work de-
montrates a promising path towards high-speed high-resolution multi-modal radiographic imaging
and tomography applications.
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2. Ultrafast CMOS image sensor development

Ultra-high-speed (UHS) or ultrafast image sensors are widely used in scientific and industrial
applications. The research on UHS CMOS image sensors for X-ray regimes has been conducted for
years. The recently published works [2, 3] push the frame rate of UHS image sensors to the range
of millions of frames per second (Mfps) by adopting burst-mode operations and advanced CMOS
technology or customized CMOS technology. Three CMOS image sensors were taped out towards
this goal, as shown in Figure 2.

|

Image of Phase 1 CIS Image of Phase 2 CIS Layout of Phase 3 CIS

Figure 2: Phasel, 2, 3 CMOS image sensor (CIS) taped out in this research.

During the phase one of this research [4], theoretical modeling and preliminary tests demon-
strated more than 10X quantum efficiency improvement for high-energy X-ray photons (>10 keV)
by depositing a photon-attenuation-layer (PAL) on a CMOS image sensor [5, 6]. In the phase
two of this research, a block-wise compact readout architecture based on unit-length-capacitor and
asynchronous successive-approximation (SAR) analog to digital converter (ADC) [7] was proposed
and implemented, which enabled the image sensor fabricated using a standard 180-nm process to
run at 76 thousand-frames-per-second (kfps). To further boost the frame rate of the image sensor,
a burst mode image sensor based on sequential transfer gates was proposed and taped out in Oct.
2022 during the phase three of this research. The sequential charge-sweep transfer gates enable the
image sensor to run at least 20 Mfps and achieve the lowest input-referred noise. Some highlights
of this burst-mode image sensor is included below.

Figure 3 shows the conceptual 20-pm pixel layout based on the sequential transfer gates, where
the orange rising-run shape stands for the photodiode, and the green polygon stands for the transfer
gate. Each photodiode finger geometry shape has been carefully calculated and optimized to have
a constant ~800V/cm strong electrical field pointing from the tip of the photodiode to the center of
the photodiode, which guarantees fast charge transfer without process modification.

As Figure 4 shows, by applying monotonically increasing control voltages and sequential timing
on TX3(Blue), TX2(Green), and TX1(Red) gates, electrons (purple and cyan) in photodiodes can
be fully transferred within 12 ns, with no image lag noticed in simulation.

Figure 5 shows the potential diagram during the charge transfer path. One can see that photon-
generated electrons are first swept into the channel under the TX3 gate due to the strong electrical
field in photodiode fingers. Then TX3, TX2, and TX1 gates turn off sequentially, which pushes
electrons to move toward the floating diffusion node. Because the TX2 gate is entirely off before
the falling transition of the TX1 gate, it is safe to move the floating diffusion node away from TX1,
which will effectively reduce the overlap capacitance between the TX1 gate and floating diffusion
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Figure 3: High-Speed Conceptual Layout of a pixel in a CMOS camera. See the text for further details.
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Figure 4: Anexample of TCAD transient simulation during charge transfer. The text contains further details.

node, increase the conversion gain of the pixel and reduce input-referred noise. At the same time,
the electrical field between the TX1 gate and the floating diffusion node is reduced, which also
reduces the dark current due to Gate-Induced-Drain-leakage (GIDL). A test chip is designed based
on this sequential transfer gate pixel in a standard 180-nm process without any process modification.
Simulations show that the test chip can run at least 20 Mfps with less than 5.8 e~ input-referred
noise, the lowest noise reported in the ultrafast burst-mode image sensor category.

3. Noise emulation using neural network

Noise is ubiquitous in imaging and especially in high-speed and ultrafast imaging, when the
signal-to-noise ratio is limited in part by the source intensity and transients that may be induced in
the electronics. Meanwhile, better understanding of the noise through modeling is useful for noise
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Figure 5: Electrostatic potential along the charge transfer path.

reduction. Some examples of noisy images from inertial confinement fusion (ICF) experiments are
shown in Figure 6. Further details may be found for example in [8]. Here we describe the use
of a generative adversarial network (GAN) to emulate image noise from the experiments. Some
examples of the synthetic images are given in Figure 6, which are qualitatively similar to the
experimental data.

Figure 6: Comparison of experimental images (Top Row) and images produced using Contrastive Unpaired
Translation (Bottom Row).

The work flow of image synthesis is summarized in Figure 7. The first step is to produce
noise-free synthetic radiographs. Three dimensional (3D) models of ICF shells are generated using
Legendre polynomials for the shell boundaries and constant densities for the shells. These shells
consist of a Si0, inner shell, an aluminum outer shell, and a foam between the two shells [8]. These
computer generated 3D shell models are projected to 2D images (or synthetic radiographs free of
noise) using a ray-tracing algorithm implementing the python library TIGRE [9].

The second step is to ‘add’ noise to the synthetic radiographs. The noise found in experimental
radiographs does not follow a standard distribution such as a Gaussian function and therefore is
difficult to simulate using traditional models. The noise can instead be applied to the synthetically
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produced noise-free radiographs using a conditional generative adversarial network (cGAN) [10].
Similar to traditional GANs, a cGAN consists of a generator network and a discriminator network;
however, rather than using a latent noise vector as the input of the generator, an image from
experiment is used instead. We use contrastive unpaired translation (CUT) [11] to model the noise
found in the experimental radiographs. Figure 7 also shows the process of training CUT using
synthetically produced radiographs.

Synthetic Image Production

Image Generation

Figure 7: The process of training CUT using synthetically produced radiographs and experimental images

The CUT model consists of a residual convolutional network [12] with nine residual blocks

for the generator network (G), PatchGAN [13] for the discriminator network (D) and a set of
l

perceptrons (H;). By using feature vectors from the /th layer of the generator’s encoder Gy,

the perceptrons (H;) are used to classify image patches produced by network as patches from
the original image. Classification loss helps to inform the generator through optimization of the
patch contrastive loss, by preserving semantic features of the synthetic data such as the location
of shell boundaries. The noise content of the experimental images is transferred to the synthetic
images by jointly optimizing the generator and discriminator through the least squares GAN loss
(LSGAN) [14]. The CUT model is trained using 200 synthetically produced images and 66
experimental images to generate the synthetic images shown in Figure 6.

4. Super-resolution using neural network

We recently demonstrated sub-pixel resolution or ‘super-resolution’ using neural networks for
post-processing of a boron-coated CCD (bCCD) pixelated images generated by neutrons. Similar
results have also been obtained for data from CMOS sensors, which will be reported elsewhere.

The detection principle for ultracold neutrons (UCNs) using a bCCD was discussed previously.
A scientific grade bCCD was used for UCN detection in our previous work [15]. The bCCD sensor
was built by the Lawrence Berkeley National Laboratory (LBNL) [16] and has been extensively
characterized by Fermilab for the Dark Energy Camera (DECam) project [17]. The detector is a
250 um thick, fully depleted, back-illuminated sensor fabriacated on high-resistivity silicon and has
8 million pixels (2k x 4k) with a pixel pitch of 15 x 15 um?. A thin '°B film up to 100 nm thick
is deposited onto the transparent rear window of the bCCD camera to act as a conversion layer.



Ultrafast CMOS image sensors and super-resolution Zhehui Wang

The UCN hit is captured through the nuclear reactions '°B (n, @0y) "Li (6%) and '°B (n, a'1y) "Li
(94%). The charged particles a, 'Li, and y-rays, penetrates the active silicon layer of the detector
to generate electron-hole (e-h) pairs. Influenced by the internal electric field, the generated holes
will travel the full length of the active silicon layer to the potential wells near the poly electrode
gates. The collected charges are converted to digitized value to be readout by the camera to create
an output image of the UCN hit.

4.1 Allpix Squared

High-statistics data samples produced with Monte Carlo simulations are required to train the
neural network. The Allpix Squared semiconductor simulation framework [18, 19] is used to gen-
erate these datasets. It is an open source simulation tool that implements end-to-end simulations
of particle detection from incident radiation to digitized detector output. The framework com-
prises different algorithms for charge transport and front-end simulations as well as an interface to
Geant4 [20] to describe the interaction of the incoming particle with the sensor material. Allpix
Squared works on a first-principles basis, moving individual charge carriers or groups thereof along
the electric field of the sensor using empirical mobility and recombination models. This approach
allows to replicate the sensor response of imaging devices given the detector parameters and electric
field distributions in the sensing element. Previous studies have demonstrated its capabilities of
accurately describing the response of CMOS sensors to minimum ionizing particles [21].

The simulation is divided into several stages, each of which describes one component of
the signal formation. In the first stage, the interaction of the incoming particle with the sensor
material and the creation of electron-hole pairs is simulated. Subsequently, these charge carriers
are propagated through the sensor in the second stage. The coupling to the front-end electronics is
calculated in the third phase, and the front-end electronics and digitization is simulated in the fourth
and last stage. For each of these stages, Allpix Squared can store the Monte Carlo truth information
which allows to link detector output and initial particle and to trace the complete history of a detected
pixel hit. This information can be exploited when training the neural network by providing both
the true UCN position as well as the generated digital image obtained from the detector simulation.
The built-in multithreading capabilities of Allpix Squared allow to scale the event generation and
to simulate the large datasets required for training the neural network.

4.2 bCCD Modeling in Allpix Squared

While UCN hit images are acquired experimentally using a conversion layer and a silicon
detector, the ground-truth UCN hit position is not available. However, we can obtain synthetically
generated UCN hit images and their corresponding ground-truth hit position by using the silicon
detector framework Allpix Squared as summarized above [18].

To accurately model the silicon detector physics, one physics check we perform is comparing
the experimental UCN hit images with Allpix’s synthetically generated images. Figure 8 shows an
example of matching an experimental hit with the closest generated synthetic image. We utilize
a matching algorithm that computes the mean squared error (MSE) between the experimental and
each synthetic image, and returns the synthetic image that results in the lowest MSE error. Recall
that the generation of Allpix Squared hits is based on Monte Carlo simulations. Therefore, the
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more synthetic hits that are generated, the higher the chance of generating a synthetic hit that better
matches the experimental.

Another physics check is the verification of the captured UCN energy spectrum. Due to the
nuclear reaction between a neutron and the '°B film, the detector will capture one of four possible
particle and energy combinations as shown in Table 1. Figure 9a plots the captured energy spectrum
of the experimental hits, while Figure 9b plots the Allpix spectrum. Both energy spectrum plots
are reconstructed to properly center on the 1470 keV a peak. Under ideal conditions, the "Li peak
should naturally occur at 840 keV. However, the "Li peak is shifted about 70 keV which motivates
the existence of a dead layer between the '°B film and fully depleted silicon layer due to the down-
shift in the energy spectrum peak. The Allpix spectrum was generated using the synthetic UCN
hits while incorporating a dead layer into the bCCD model. The dead layer for the bCCD is fully
characterized by LBNL [22]. With the dead layer modeled, the Allpix energy spectrum distribution
and peaks well matches the experimental, which shows that the energy loss and charge creation
within the detector is well captured by Allpix.

Table 1: Detection probability (w’) and the produced reaction energy of the charged particles from the
neutron capture process. Note that a dead layer exists between the '°B film and the fully depleted region of
the Si sensor, which would reduce the actual energy captured.

Ion o' Energy (keV)
Li 47% 840

Wi 3% 1020

@ 47% 1470

@ 3% 1780

Experimental | Synthetic

1 2

3 4 5
MSE 232.59 61.58 75.76 121.63 2.96
SSIM 0.59 0.74 0.71 0.71 0.99

Figure 8: We aim to match an experimental UCN hit with the best generated synthetic hit. The matching
algorithm computes the mean squared error (MSE) between the experimental image and a synthetic image.
The smaller the MSE, the closer the synthetic image is to the experimental. The structural similarity index
measure (SSIM) between the experimental and synthetic image is also computed, where a perfect match
corresponds to SSIM = 1. In this example, synthetic image 5 best matches the experimental.

4.3 Deep Learning for position super-resolution

Machine learning techniques are very popular in recent years to learn a predictive model
between input and output labels. Deep learning is a special case of machine learning that is very
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Figure 9: The captured UCN energy spectrum by (a) the bCCD and (b) Allpix Squared. (Note: The expected
peaks are 'Li = 840 keV and a =1470 keV.)

powerful in learning nonlinear predictive models by using neural networks [23]. We aim to leverage
deep learning to obtain a predictive model that maps from input UCN hit images to the ground-truth
hit position.

Deep learning typically requires a large dataset to attain accurate predictive models. We
use Allpix Squared to generate a large synthetic dataset consisting of 60,000 images and their
corresponding ground-truth labels. Note that, in addition to the ground-truth hit position, other
types of ground-truth information from the simulation history or prior simulation knowledge can
be included in the output labels. The experimental UCN data is not used to train the neural network
as the ground-truth labels are not available. Using the synthetic data, we propose to train a fully
connected neural network (FCNN). Figure 10a shows the overview of an arbitrary FCNN model
with three hidden layers. In the FCNN architecture, the 2-D input images are first flattened into
a 1-D vector. The flattened layer is then followed by three hidden layers with 124, 125, and 124
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hidden neurons, respectively, and the output layer. While not shown in Figure 10a, dropout layers
are also included in the FCNN during the training and testing process. Dropout layers are popularly
used in neural networks to help mitigate over-fitting issues as well as uncertainty quantification. We
use the Pytorch library to train the FCNN to obtain a predictive mapping between the input UCN hit
images and the ground-truth labels. The trained model can then be used to make predictions on the
hit position of input UCN hit images, both synthetic and experimental images. Figure 10b shows
an example FCNN prediction on the entry point position for a synthetic hit image with sub-pixel
resolution. It is important to note that the accuracy of the predictive model for this arbitrary FCNN
can be improved by tuning the network architecture, number of hidden layers and neurons, and
other neural network parameters including the number of training epochs and learning rate.

G, L, 4
El J"’J\%\*‘?é’gzbé’g "c}; x  Actual Entry Point

3 Hidden
Layers

Figure 10: (a) Overview of a FCNN model with three hidden layers. The input images of size 14 x 14 pixels
are flattened into a 1-D vector. The output of the neural network is a 1-D vector of size n, which denotes the
number of ground-truth labels. (b) The ground-truth labels in this example include the (x, y) position for the
hit entry point, where the red ‘x’ denotes the actual entry point. The blue kernel density estimation (KDE)
plot shows the FCNN prediction, which obtains sub-pixel position resolution.

5. Summary

A 20 Mfps CMOS image sensor design is described. TCAD simulations showed that the
test chip can run at least 20 Mfps with less than 5.8 e~ input-referred noise, the lowest noise
reported in the ultra-fast burst-mode image sensor category. By using neural networks for post data
processing, we demonstrated noise emulation and super position resolution at a fraction of pixel size.
The combination of novel CMOS pixel designs and data-enabled image post-processing provide a
promising path towards ultrafast multi-modal radiographic imaging and tomography applications.

SL and ZW wish to thank Drs. Don Groom and Steve Holland, both from Lawrence Berkeley
National Laboratory, for stimulating discussions. This work is supported in part by the LANL
LDRD, C3, and ICF programs under the Contract No. 89233218CNAQ000001. Prof. Zhu’s group
at UT Austin would like to acknowledge the NSF support through the Award 1802319.
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