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1. Introduction

The origin of flavour is one of the biggest puzzles in particle physics. In the search for possible
explanations of the observed fermion mass and mixing patterns, many ideas have been put forward.
Despite that there is arguably no baseline theory of flavour. Of all the ideas, flavour symmetries
are perhaps the best tool we have at our disposal. When it comes to the lepton sector, flavour
symmetries able to describe/predict large mixing angles are needed. Below we briefly discuss such
symmetries and give examples of models based on them.

2. Non-Abelian discrete flavour symmetries

At high energies, the theory is assumed to be invariant under the following transformations:

ϕ(x) → ρ(g) ϕ(x) , g ∈ G f , (1)

where G f is a non-Abelian finite group describing flavour symmetry, ρ is a unitary representation
of G f , and ϕ denotes a multiplet of fermion fields. Very often it is assumed that three lepton
families are unified at high energies, and ϕ = (Le, Lµ, Lτ)T furnishes a 3-dimensional irreducible
representation of G f . Here Lα, α = e, µ, τ, stand for the electroweak lepton doublets. Such a
symmetry has to be broken at low energies, since electron, muon and tau lepton have different
masses. While being completely broken at the Lagrangian level, G f may leave an imprint on the
structures of the charged lepton and neutrino mass matrices if the latter remain invariant under its
Abelian subgroups Ge and Gν, respectively:

ρ(ge)
†MeM†e ρ(ge) = MeM†e , ge ∈ Ge and ρ(gν)

T Mνρ(gν) = Mν , gν ∈ Gν . (2)

Since ρ(ge) and MeM†e commute, they can be diagonalised by the same unitary matrix Ue. The
same applies to ρ(gν) and M†ν Mν, which can be diagonalised by Uν. Thus, fixing the residual
symmetries Ge and Gν, one can derive the form of the PMNS neutrino mixing matrix U = U†eUν.
Such an approach has been extensively studied over the past decades, see [1–5] for reviews.

The minimal (in terms of the number of elements) non-Abelian finite groups, which possess
a 3-dimensional irreducible representation, are permutation groups A4, S4, A5 (and their double
covers). If the residual symmetries Ge and Gν are both larger than Z2, these groups lead to highly
symmetric mixing patterns. The examples being tri-bimaximal (TBM) mixing [6] from A4 [7, 8] or
S4 [9] and golden ratio (GR) mixing [10] from A5 [11]. Both patterns are characterised by maximal
atmospheric mixing, sin2 θ23 = 1/2, and zero reactor mixing angle, sin2 θ13 = 0. The solar mixing
parameter sin2 θ12 = 1/3 ((

√
5r)−1 ≈ 0.276) for TBM (GR) mixing, with r = (1 +

√
5)/2 being the

golden ratio. While both solar and atmospheric mixing angles are in agreement with the current
global data [12–14] at approximately 2σ, the zero reactor angle is not experimentally viable. Still,
these highly symmetric mixing patterns can be viewed as a leading-order approximation.

One of the ways to reconcile TBM mixing with the data is to assume that Gν = Z2 (while
keeping Ge > Z2). This fixes Uν up to a (complex) rotation in one of the three planes. The rotation
in the 1-3 (2-3) plane leads to trimaximal mixing 2, TM2 [15] (TM1 [16]), for which the second
(first) column of the TBM mixing matrix is preserved. The a priori free angle parameter of the
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rotation matrix is fixed by the experimentally determined value of θ13. In addition, certain relations
between sin2 θ12 and sin2 θ13, as well as between the cosine of the Dirac CP-violating phase δ, θ13

and θ23 are predicted. These relations are often referred to as neutrino mixing sum rules. Similarly,
one can assume Ge = Z2 and Gν > Z2, or both residual symmetries to be (different) Z2. A
systematic classification of all possible cases and derivation of the corresponding sum rules have
been performed in [17] and their phenomenological viability further assessed in [18].

Another possibility consists in breaking Ge completely and assuming a certain ansatz for the
matrix Ue, which will correct Uν = UTBM fixed by Gν = Z2 × Z2. Oftentimes, the Ue contribution
to the PMNS matrix is referred to as charged lepton corrections. For example, if Ue is given by
a complex rotation matrix in the 1-2 plane, sin2 θ23 is related to sin2 θ13, whereas cos δ to θ13 and
θ12. If instead Ue is given by a product of two complex rotation matrices (in the 2-3 plane followed
by the 1-2 plane), one gets a sum rule by which cos δ is expressed in terms of the three mixing
angles [19, 20]. A systematic study of other forms of Ue has been performed in [21].

The most salient feature of the approach considered is that the predictions of the mixing sum
rules can be tested at current and future neutrino oscillation experiments [18, 20, 22–25]. In this
regard, future projects such as DUNE, T2HK, ESSnuSB and JUNO will play a crucial role in
narrowing down the broad class of currently viable lepton flavour models, see e.g. [26–28].

However, the approach faces several challenges. At themoment, there exist many viablemodels
based on different discrete groups. In concrete models, multiple flavon fields with elaborated
potentials are usually needed to realise a desired symmetry breaking pattern. Higher-dimensional
operators with multiple flavon insertions may spoil successful leading-order predictions. The
bottom-up approach is mainly focused on the neutrino mixing parameters, which are “decoupled”
from neutrino masses.

3. Modular flavour symmetries

In [29], modular invariance was proposed to play the role of flavour symmetry. Below we
briefly summarise key features of this proposal. One considers a supersymmetric N = 1 theory.
The theory depends on a set of chiral supermultiplets ϕ comprising the dimensionless modulus
τ (Im τ > 0) and other superfields ϕI (I numbers sectors of the theory, e.g. electroweak lepton
doublets and singlets). In the case of rigid supersymmetry and switching off gauge interactions, the
Lagrangian is fully specified by the Kähler potential K(ϕ, ϕ̄) and the superpotential W(ϕ):

L =

∫
d2θd2θ̄ K(ϕ, ϕ̄) +

∫
d2θ W(ϕ) +

∫
d2θ̄ W(ϕ̄) . (3)

It is assumed to be invariant under transformations γ of the modular group Γ = PSL(2, Z):1

τ → γτ =
aτ + b
cτ + d

, ϕI → (cτ + d)−kI ρI (γ̃) ϕI , (4)

where a, b, c, d are integers obeying ad − bc = 1. Such transformations are generated by the two
elements of Γ:

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
. (5)

1The construction can be extended to the homogeneous modular group Γ = SL(2, Z), see e.g. [30].
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The matrix ρI (γ̃) is a unitary representation of the group ΓN = Γ/Γ(N), obtained as a quotient
between the group Γ and a principal congruence subgroup Γ(N), the positive integer N being the
level of the representation. The level N is kept fixed in the construction, and γ̃ represents the
equivalence class of γ in ΓN . Here we assume the weights kI to be integer. While the modular
group is infinite, the quotient group is finite. Remarkably, for N ≤ 5, the finite modular groups ΓN
are isomorphic to permutation groups: Γ2 � S3, Γ3 � A4, Γ4 � S4 and Γ5 � A5, see e.g. [31].

Expanding the superpotential in powers of the matter multiplets ϕI ,

W(ϕ) =
∑

I1,...,In

YI1 ... In (τ) ϕI1 . . . ϕIn , (6)

and requiring invariance of W under the transformations in Eq. (4), we find that the τ-dependent
Yukawa couplings YI1 ... In (τ) should transform as

YI1 ... In (τ) → (cτ + d)kY ρY (γ̃)YI1 ... In (τ) , (7)

where ρY is a representation of ΓN , and kY and ρY are such that

kY = kI1 + . . . + kIn and ρY ⊗ ρI1 ⊗ · · · ⊗ ρIn ⊃ 1 . (8)

Thus, YI1 ... In (τ) are modular forms of weight kY and level N furnishing the representation ρY of
the finite modular group ΓN . Such forms span a linear space of finite dimension, which depends
on N and kY . For example, for N = 3 and kY = 2, this dimension is three, implying that there are
three modular forms arranging themselves into a triplet of Γ3 � A4 [29]. Higher weight modular
forms can be obtained from the weight-2 forms. For N = 4 (N = 5), there are 5 (11) weight-2
modular forms, which arrange themselves into a double and a triplet of Γ4 � S4 [32] (two triplets
and a quintet of Γ5 � A5 [33]).

Modular invariance can be consistently combined with CP symmetry [34]. The minimal (with
no flavons) viable modular and CP invariant model at level N = 4, in which neutrino masses are
generated via the seesaw mechanism, contains 7 real parameters (for 12 observables in the lepton
sector). Being perfectly compatible with the global oscillation data, it leads to normal ordering of
neutrino masses, m1 = 0.012 eV and δ = ±1.64π (the Majorana phases are also predicted) [34].

Compared to the conventional discrete symmetry approach, modular invariance has a number
of advantages. Usually complicated scalar sectors of traditional models are replaced by the moduli
space. Yukawa couplings are the known functions of the modulus τ. The familiar discrete flavour
symmetries A4, S4, A5 arise as quotients of the modular group. Both mass and mixing parameters
are simultaneously constrained. In addition, charged fermion mass hierarchies can be generated by
a small deviation of the modulus from the special points τ = i, e

2π i
3 , and i∞, which preserve S, ST

and T elements, respectively [35–37]. However, there are several challenges associated with the
considered bottom-up approach. Unlike the superpotential, the Kähler potential is not constrained
by the modular symmetry alone, which brings in extra free parameters and results in a reduced
predictability of the set-up [29, 38]. In most of models constructed so far, τ is regarded as a spurion
parameterising modular symmetry breaking, and the dynamical mechanism of its stabilisation is
not known.2 The level N , weights kI and representations ρI are inputs, which are not fixed by
the theory itself. Interestingly, under certain mild assumptions, modular-invariant models exhibit a
universal (independent of N , kI and the form of the Kähler potential) behaviour around τ = i [40].

2See [39] for a recent analysis of supergravity-motivated potentials for the modulus.
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