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We discuss the propagation of decaying neutrinos in matter and outline a procedure to obtain the
analytic oscillation probabilities in two and three generation framework. For unstable neutrinos,
the Hermitian and anti-Hermitian components of the e�ective Hamiltonian do not commute
and cannot be simultaneously diagonalised by unitary transformations for all matter densities.
We present the compact analytic expressions for neutrino probabilities in matter for the two
flavour case, obtained using a re-summation of the inverse Baker-Campbell-Hausdor� (BCH) or
Zassenhaus expansion, We also outline briefly how the approximate probabilities for the three
flavour case can be obtained assuming only the vacuum mass eigenstate ⌫3 decays. We show the
baselines and energies where the di�erent approximations give good matching with the numerical
probabilities.
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1. Introduction

Neutrino oscillation experiments have unequivocally established that neutrinos have masses,
and their flavours mix. However, the possibility of new physics e�ects at a sub-leading level cannot
be eliminated. In this talk, we discuss the scenario of invisible decay and oscillation of neutrinos.

The e�ective Hamiltonian for neutrino decay can be represented as Hm = Hm � i�m/2 with
Hermitian matrices Hm and �m corresponding to energy and decay respectively. In general, the
mass and decay eigenstates may not be the same and hence are not simultaneously diagonalisable
by unitary transformations 1. Even if the eigenstates are same in vacuum, the matter e�ect makes
the mismatch inevitable. In this talk, we will describe the propagation of unstable neutrinos in
matter We work in the basis where the Hermitian part of the Hamiltonian is diagonal, which is the
same as the basis of neutrino mass eigenstates in matter in the absence of decay.

2. Two Flavour case

The e�ective Hamiltonian may be written in the basis of neutrino mass eigenstates in matter as

Hm =

 
a1 � ib1 �

1
2 i�ei�

�
1
2 i�e�i� a2 � ib2

!
, (1)

where ai, bi, �, � are real. Since �m needs to be positive semidefinite, bi � 0 and �2
 4b1b2.

Note that since [Hm, �m] , 0 in general,Hm is not a normal matrix, and e�iHmt , e�iHmte��mt/2.
Thus, one has to express e�iHmt in terms of a chain of commutators using the inverse Baker-
Campbell-Hausdor� (BCH) formula, also known as the Zassenhaus formula [2]. The survival
probability of a neutrino of flavor ↵ is [3]

P↵↵ =
e�(b1+b2)t

2

h
(1 + |A|2) cosh(�bt) + (1 � |A|2) cos(�at) � 2Re(A) sinh(�bt) + 2Im(A) sin(�at)

i
(2)

where, Re(A) = � cos 2✓m + �̄�̄b sin 2✓m cos � Im(A) = � �̄�̄a sin 2✓m cos �

|A|2 = cos2 2✓m � 2�̄�̄b sin 2✓m cos 2✓m cos �; |B|2 = sin2 2✓m + 2�̄ sin 2✓m
⇣
�̄a sin � + �̄b cos 2✓m cos �

⌘
with �a ⌘ a2 � a1, �b = b2 � b1 , �̄ ⌘

�
|�d |
, �̄a ⌘

�a
|�d |
, �̄b ⌘

�b
|�d |
..

For the special case where only the mass eigenstate ⌫2 in vacuum decays (with lifetime ⌧2),
the probabilities in matter may be obtained by the following identifications: a1,2 =

m̃
2
1,2

2E , b1,2 =
↵2
4E [1 ⌥ cos[2(✓ � ✓m)], � = 0, � = ↵2

2E sin[2(✓ � ✓m)]. Here, m̃i(mi) and ✓m(✓) are the mass eigenvalues and
mixing angle in matter (vacuum) in, and ↵2 = m2/⌧2. Note that, in matter both states decay.

3. Three flavour case

For three flavours the most general Hamiltonian in matter can be written as,

Hm ⌘ Hm �
i
2
�m ⌘

©≠≠
´

a1 0 0
0 a2 0
0 0 a3

™ÆÆ
¨
�

i
2

©≠≠
´

2�1 �12ei�12 �13ei�13

�12e�i�12 2�2 �23ei�23

�13e�i�13 �23e�i�23 2�3

™ÆÆ
¨
. (3)

1Diagonalisation using non-unitary matrices have been discussed in [1] for propagation in vacuum.
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Figure 1: Regions in (E⌫ � L) parameter space where |�Pµe | < 1%. See text for details.

However, neutrino decay has not been seen yet and it is plausible to take the length-scales
governing the decay to be greater by at least a factor of ⇠ 1/O(�) as compared to the associated
oscillation length-scales. In addition, the positive definiteness of the decay matrix � would imply
O(�2

i j
) . O(�i)O(�j). Thus we get, �1�m2

31 . O(�)�m2
21, �2�m2

31 . O(�)�m2
21 , �3�m2

31 .
O(�)�m2

31; and therefore, �1, �2 . O(�3
); �3 . O(�), �12 ⇠ O(�3

), �13, �23 ⇠ O(�2
) ; �m2

i j
=

m2
i
� m2

j
, the di�erence between the mass squared values.

Thus, it is a good approximation to consider the scenario with only �3 , 0 in vacuum. But matter
e�ect can introduce o�-diagonal terms. We have obtained analytic expressions of probabilities in
matter for this case for – (i) the One Mass Scale Dominance (OMSD) approximation with�m2

21 = 0;
The 2-flavor formalism discussed in the earlier section can be used e�ectively for this. (ii) Using the
Cayley-Hamilton theorem – expanding in terms of ↵ = �m

2
21

�m2
31

, s13 and �3 as well as those expanded in
terms of ↵, s13 and exact in �3 [4]. s13 = sin ✓13, the 1-3 mixing angle of the PMNS matrix. These
probabilities are relevant for long baseline and atmospheric neutrino experiments and can provide
new insights. Figure 1 shows regions in the (E⌫ � L) parameter space where |�Pµe | < 1% with the
OMSD approximation (blue) and for expansion in ↵, s13 and exact in �3 (red). In the purple region
this condition is true for both methods. In the gray region the analytic approximations are not valid,
since ↵� > 1. In the white spaces the analytic approximations are valid but not accurate up to 1%.
The horizontal dashed lines denote L = 1300 km and L = 7000 km.
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