## PROCEEDINGS <sup>OF</sup> SCIENCE

# PoS

## The GERDA enterprise in the search for matter creation

Tommaso Comellato<sup>*a*,1,\*</sup>

<sup>a</sup>Technische Universität München, James-Franck-Str. 1, 85748, Garching bei München, Germany

*E-mail*: tommaso.comellato@tum.de

The GERDA experiment has searched for the neutrinoless double-beta decay of <sup>76</sup>Ge from 2011 to 2019, accumulating an exposure of 127.2 kg yr. Thanks to the novel experimental concept of operating bare germanium detectors in an instrumented liquid argon bath, it reached a background level of  $(5.2^{+1.6}_{-1.3}) \cdot 10^{-4} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$ , which is the lowest value ever achieved in a double-beta experiment. No hint for a discovery was found, and the limit on the half-life of the process was set to  $T_{1/2}^{0\nu\beta\beta} > 1.8 \cdot 10^{26} \text{ yr}$  at 90% C.L.. In addition to this result, the GERDA collaboration has provided the most precise determination of the half-life of the standard double-beta decay of <sup>76</sup>Ge, which has been preliminarily set to  $T_{1/2}^{2\nu\beta\beta} = (2.022 \pm 0.041) \cdot 10^{21} \text{ yr}$ . The existence of beyond the Standard Model physics has also been investigated through the emission of exotic particles and no evidence for a signal was found.

Neutrino Oscillation Workshop-NOW2022 4-11 September, 2022 Rosa Marina (Ostuni, Italy)

<sup>&</sup>lt;sup>1</sup>For the GERDA collaboration \*Speaker

<sup>©</sup> Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

#### 1. Double-beta decay and the creation of matter

Single  $\beta$ -decays are a standard mean for nuclei to proceed towards stability. In a few cases, single  $\beta$ -decay cannot occur, and the only way nuclei can reach stability is through the simultaneous  $\beta$ -decay of two nucleons. Goeppert-Mayer conceived such a process in 1935 and named it *double beta-disintegration* [1], though nowadays is commonly referred to as two-neutrinos double-beta decay  $(2\nu\beta\beta)$ . A few years later, Furry combined it with the theory of Majorana for neutrinos [2] and proposed the *neutrinoless* double-beta decay  $(0\nu\beta\beta)$ , a particular double-beta decay where no (anti)neutrinos are emitted in the final state [3]. Since in this process two matter particles are created without compensation of anti-matter, it has also been named *creation of matter* [4], and its observation would be a hint for the existence of Beyond the Standard Model (BSM) physics.

As neutrinos are more likely to elude detection, the experimental signature of both  $2\nu\beta\beta$  and  $0\nu\beta\beta$  consists in the energy deposition of two electrons. If no neutrinos are emitted, the energy of the electrons will be precisely that of the *Q*-value of the decay, which is typically referred to as  $Q_{\beta\beta}$  and ranges from 1 to 4 MeV, according to the isotope. When the two neutrinos are present in the final state, the energy of the electrons will be lower than  $Q_{\beta\beta}$  by the amount which is carried away by neutrinos, and therefore ranges from zero to  $Q_{\beta\beta}$ .

#### 2. The GERDA enterprise

The GERDA experiment has searched for the  $0\nu\beta\beta$  decay of <sup>76</sup>Ge from 2011 to 2019, and accumulated a total exposure of 127.2 kg yr. The experimental apparatus was located in Hall A of the Laboratori Nazionali del Gran Sasso (LNGS), shielded by 1400 m of rock overburden, and used the novel experimental concept of operating HPGe detectors in an instrumented Liquid Argon (LAr) bath, acting both as cooling material as well as a passive and active shield. A detailed description of the setup can be found in [5].

### 2.1 Results

#### on the search for $0\nu\beta\beta$ decay

The final energy spectrum of the GERDA experiment around  $Q_{\beta\beta}$  is shown in Fig. 1. The statistical analysis assumes a gaussian signal on a flat background and is carried out as



**Figure 1:** Final energy spectrum around  $Q_{\beta\beta}$  (top) and result of the unbinned extended likelihood fit (bottom) on GERDA data. Figure taken from [6].

an unbinned extended likelihood fit, in the energy window between 1930 and 2190 keV (excluding the two regions around the expected  $\gamma$  lines from the decays of <sup>208</sup>Tl and <sup>214</sup>Bi at 2103 and 2119 keV, respectively). In a frequentist framework, the best fit for the number of signal events is zero, and the lower limit on the half-life is:  $T_{1/2}^{0\nu\beta\beta} > 1.8 \cdot 10^{26}$  yr at 90% C.L., which is also the result shown in Fig. 1. The best fit result for the background is:  $BI = (5.2^{+1.6}_{-1.3}) \cdot 10^{-4} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$ , which is the lowest background level ever achieved in a double-beta experiment [6].

#### **2.2** Results on the physics below $Q_{\beta\beta}$

Thanks to the unprecedentedly low background level in the energy range below  $Q_{\beta\beta}$ , the GERDA experiment provided the most precise measurement of the half-life of <sup>76</sup>Ge  $2\nu\beta\beta$  decay. A preliminary estimation, which will be the subject of a dedicated publication, is  $T_{1/2}^{2\nu\beta\beta} = (2.022 \pm 0.041) \cdot 10^{21}$  yr [7].

In the same energy range, the GERDA collaboration also performed searches for BSM physics. BSM theories which predict the existence of exotic particles can lead to different double-beta decays where such exotic particles are also emitted in the final state. This implies a different repartition of the energy of the decay, hence a deformation of the energy spectrum of the electrons with respect to the Standard Model  $2\nu\beta\beta$  decay. Specifically, the GERDA collaboration has searched for Majoroninvolving  $0\nu\beta\beta$  decays, Lorentz violating  $2\nu\beta\beta$  decay and emission of light exotic fermions (sterile neutrinos and  $Z_2$ -odd fermions). This has been pursued using a subset of 32.8 kg yr of the total exposure, which allowed for a minimization of the systematic uncertainties. The statistical analysis lead as a best fit the null signal strenght for all the considered decay modes. The results of the fit are shown graphically in Fig. 2 as 90% C.L. limit, and the numerical results of such exotic decays are listed in Tab. 1 and can be found in more details in [8].



**Figure 2:** Data energy spectrum from the 32.8 kg yr exposure of GERDA and best-fit model for  $2\nu\beta\beta$  decay and for exotic double-beta decays. The contributions from the underlying backgrounds is also shown with the shadowed histogram. The most prominent  $\gamma$ -lines are labeled. Figure taken from [8].

| Exotic double- $\beta$ decay mode                     | Observed limit at 90% C.L.                              |                                 |
|-------------------------------------------------------|---------------------------------------------------------|---------------------------------|
| Decays with Majorons                                  | $T_{1/2}(yr)$                                           | g <sub>J</sub>                  |
| $0\nu\beta\beta J$ (n=1)                              | $> 6.4 \cdot 10^{23}$                                   | $< (1.8 - 4.4) \cdot 10^{-5}$   |
| $0\nu\beta\beta J$ (n=2)                              | $>2.9\cdot10^{23}$                                      | -                               |
| $0\nu\beta\beta J$ (n=3)                              | $> 1.2\cdot 10^{23}$                                    | $< 1.7\cdot 10^{-2}$            |
| $0\nu\beta\beta JJ$ (n=3)                             | $> 1.2\cdot 10^{23}$                                    | < 1.2                           |
| $0\nu\beta\beta JJ$ (n=7)                             | $> 1.0\cdot 10^{23}$                                    | < 1.1                           |
| Lorentz-violating $2\nu\beta\beta$                    | $(-2.7 < a_{of}^{(3)} < 6.2) \cdot 10^{-6} \text{ GeV}$ |                                 |
| Decay into sterile neutrino / $m_N = 600 \text{ keV}$ | $sin^2\theta < 0.013$                                   |                                 |
| Decay into $Z_2$ -odd fermions                        | $T_{1/2}(yr)$                                           | $g_{\chi}$ (MeV <sup>-2</sup> ) |
| $m_{\chi} = 300 \mathrm{keV}$                         | $> 1.6\cdot 10^{23}$                                    | $< (0.6 - 1.4) \cdot 10^{-3}$   |

**Table 1:** Summary of the results obtained for the search of exotic double- $\beta$  decay modes of <sup>76</sup>Ge with the GERDA experiment. Results and discussion can be found in [8].

#### References

- [1] M. Goeppert-Mayer, Double Beta-Disintegration, Phys Rev 48, 512–516 (1935).
- [2] E. Majorana, *Teoria simmetrica dell'elettrone e del positrone*, Il Nuovo Cimento 14, 171–184 (1937).
- [3] W. H. Furry, On Transition Probabilities in Double Beta-Disintegration, Phys Rev 56, 1184–1193 (1939).
- [4] M. Agostini et al., *Toward the discovery of matter creation with neutrinoless double-beta decay*, arXiv:2202.01787.
- [5] M. Agostini et al. (GERDA collaboration), Upgrade for Phase II of the GERDA experiment, European Phys J C 78, 388 (2018).
- [6] M. Agostini et al. (GERDA collaboration), Final Results of GERDA on the Search for Neutrinoless Double-β Decay., Phys Rev Lett 125, 252502 (2020).
- [7] M. Agostini et al. (GERDA collaboration), *Precision measurement of the* <sup>76</sup>Ge double-beta decay rate with GERDA Phase II, In preparation.
- [8] M. Agostini et al. (GERDA collaboration), Search for exotic physics in double- $\beta$  decays with GERDA Phase II, arXiv:2209.01671.