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1. Introduction

Precisely measuring the mass of the top quark has been the goal of many measurements since
the discovery of the top quark almost three decades ago. Of special interest have been studies
involving B-hadrons originating from the top-quark decay [1-4]. Such studies have demonstrated
that the kinematics of the B-hadron significantly depends on the value of the top-quark mass and
that measurements of certain observables can be used to extract the value of the top-quark mass
with great precision.

However, all of those past studies were performed at next-to-leading order (NLO) in QCD. As
measurements have become progressively more precise over the years, it has become increasingly
desirable to increase the precision of such theory predictions by including the NNLO corrections.
Fully differential descriptions of the production and decay of top-quark pairs at the LHC with NNLO
precision first became available a few years ago [5]. However, that calculation was performed at
the level of partons, studying b-jets rather than B-hadrons.

Any perturbative calculation at the parton level can be turned into a calculation for the pro-
duction of a hadron using the fragmentation function formalism [6]. Within this formalism, the
cross section for the production of a hadron is factorised into a convolution of the partonic cross
section and a fragmentation function. The fragmentation function describes the transition from
a parton to a hadron. This is in full analogy to the way parton distribution functions (PDFs) are
used to describe the transition from hadrons to partons in the initial state. Fragmentation has been
implemented for the first time in a general code for the computation of NNLO QCD cross sections
in ref. [7]. This makes it possible to study, for the first time, top-quark pair production and decay in
association with a B-hadron at the LHC at NNLO in QCD. While this application is indeed what is
presented here, the software is completely general and able to compute the NNLO-accurate cross
sections for any process involving any final-state hadron.

Central to predictions involving fragmentation are the fragmentation functions. They are
inherently non-perturbative objects and are obtained from fits to data, typically data from lepton
colliders. For consistency, the theory predictions used for this fit have to be at least of the same
perturbative order as the calculation in which they are subsequently employed. No fits consistent
with our approach were available in the literature, so in ref. [8] we performed such a fit ourselves.
This resolved a minor inconsistency in the calculations of ref. [7], where fragmentation functions
extracted using either a NLO computation [9] or a NNLO computation within a different approach
[10] were used. While such an inconsistency leads to only small numerical differences, as was
tested in ref. [7], using a fully consistent set of fragmentation functions is vital to achieving the
desired theoretical precision.

From the experimental side, the precision of the extracted value of the top-quark mass can
be significantly improved if the decay of the B-hadron is incorporated into the theory predictions.
This is because fully reconstructing a B-hadron is difficult in practice and can be achieved in only
a small fraction of all events. If the theory predictions can include a description of the decay of the
B-hadron to a specific descendent particle, then only this descendant will need to be reconstructed
in an experiment. A novel approach to describing the decay of a hadron within the fragmentation
function formalism is described in ref. [8]. I will present some of the differential distributions
involving the decay products of B-hadrons.
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Figure 1: Left: the distribution of p7 (B)/pr (Jg), the ratio of the transverse momenta of the B-hadron and
the jet that contains it, at LO (green), NLO (blue) and NNLO (red). Right: a comparison of the sizes of
different uncertainties.

2. Results

B-hadron fragmentation functions are typically fitted to data collected at e*e~ colliders [9, 11—
14]. Indeed, the fit presented in ref. [8] is based on data from the ALEPH [15], DELPHI [16],
OPAL [17] and SLD [18] collaborations. One of the observables studied in ref. [7] is particularly
sensitive to the shape of the fragmentation function, potentially making it useful for extracting the
fragmentation function from LHC data. This observable is the ratio of the transverse momentum
of the B-hadron to the transverse momentum of the jet that contains the B-hadron, p7 (B)/pr (JB).

The distribution of this observable is shown in fig. 1. The jet is clustered using the anti-kr
algorithm using R = 0.8. The only phase space cuts applied to the calculation of this distribution
are pr (B) > 10 GeV and |n(B)| < 2.4. For the central prediction, the renormalisation scale ug,
factorisation scale yr and fragmentation scale yr, were set to ugr = ur = ir, = m;/2. The scale
bands are obtained by varying these three scales independently by a factor of 2 around their central
values, subject to the constraint 1/2 < p;/p; <2, wherei,j € {R, F, Fr}.

Near the peak of the distribution, the NNLO curve (red) is consistent with the NLO one (blue)
within the scale uncertainties. The size of the scale uncertainties is likewise reduced at NNLO
compared to NLO. Away from the peak, however, slow perturbative convergence is observed. This
effect is exacerbated for smaller values of R, suggesting that the cause is out-of-cone radiation. In
the right panel of fig. 1, the NNLO scale uncertainty, fragmentation function uncertainty and PDF
uncertainty are compared. While the scale uncertainty is similar in magnitude to the fragmentation
function uncertainty, the PDF uncertainty is much smaller. Varying the PDF also does not change
the shape of the spectrum. This suggests that B-hadron fragmentation functions could be extracted
from LHC data in a PDF-insensitive manner.

Of particular interest for top-quark mass extractions is the invariant mass of the B-hadron or its
descendant with the lepton from the decay of the intermediate W-boson in semi-leptonic top-quark
decays. Ideally, the B-hadron is always paired with the lepton from the decay of the same top-quark.
In practice, a good approximation is to compute the invariant mass for both leptons and choose the
smaller invariant mass. This observable is referred to as m(F{)mi,, where F can be the B-hadron
or one of its descendants.
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Figure 2: The invariant mass m (F¢)yin at LO (green), NLO (blue) and NNLO (red). Shown are the results
for F = B (left), F = J/y (centre) and F = u (right). The green, blue and red bands correspond to the
15-point scale uncertainty bands, while the yellow bands indicate the fragmentation function uncertainty.

Shown in fig. 2 is the distribution of m (F€)mi, for B-hadrons (left), as well as for J /i mesons
(centre) and muons (right) coming from the decay of a B-hadron. These results were computed
using the following event selection requirements:

o pr(€) >25GeV, |n(6)] < 2.5,

e atleast 2 anti-k7 jets (R = 0.4) with pr (j) > 25 GeV and |5(j)| < 2.5,
* AR(¢,j) > 0.4,

e pr(F) > 8GeV and |n(F)| < 2.5, F must be part of one jet.

The scales were again chosen as for fig. 1. Unlike fig. 1, these results use the new fragmentation
functions fitted in ref. [8].

The NNLO curve (red) is always consistent with the NLO result (blue) within the scale
uncertainties, except for the case of B-hadrons, where the NNLO corrections are large at small
invariant masses. Other results in ref. [8] suggest this effect is caused by the specific selection
cuts used to produce fig. 2. Similarly, the scale uncertainties are significantly reduced at NNLO
compared to NLO, except for the same region of low invariant masses for F = B. The distribution
for muons from B-hadron decays is especially stable, receiving only minor shape corrections at
NNLO. The reduction of scale uncertainties is also largest for F' = .

The uncertainty on the fragmentation function is shown in fig. 2 as a yellow band around the
NLO results. It is only barely visible, as the fragmentation function uncertainty is significantly
smaller than the scale uncertainties, even at NNLO.

3. Conclusions

I have presented some of the results from the first calculations of top-quark pair production at the
LHC in association with a B-hadron at NNLO in QCD. These results demonstrate the possibility
of extracting fragmentation functions from LHC data in a manner which does not introduce a
dependence on the choice of PDF. The results also significantly improve on the precision of
previous studies of the process in the context of top-quark mass extractions.
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