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In recent years, ALICE has carried out many measurements of the production of light nuclei in pp,
p–Pb and Pb–Pb collisions at different energies. Even though a clear evolution with multiplicity
is measured for many key observables, the theory interpretation of this evolution is still debated.
In this contribution, the measurements of the ratio between the production yields of nuclei and
protons and of the coalescence parameters �2 as a function of multiplicity are shown and compared
with the predictions of the statistical hadronisationmodel and of the coalescencemodel. Moreover,
the measurement of the coalescence parameter �2 in high-multiplicity pp collisions as a function
of the transverse momentum is compared with theoretical predictions that take into account both
the form of the nuclear wavefunction and the dependence of the source size on the transverse
momentum of the nucleons. Finally the latest measurements of the hypertriton production are
reported and compared with the available theoretical models.
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1. Nuclear matter production

Although at the LHC light (anti)nuclei are abundantly produced, their production mechanisms
are not completely understood. Two classes of phenomenological models attempt to describe them,
namely the statistical hadronisation [1] and the coalescence [2] models. According to the statistical
hadronisation model (SHM), (anti)nuclei are produced at the chemical freeze-out, along with all
the other hadrons. The SHM can describe the production yields (d#

dH ) in central Pb–Pb collisions
[3], including yields of nuclei, using only three parameters: temperature ) , volume + and baryo-
chemical potential `B. In Pb–Pb collisions, a grand canonical approach is used since the condition
+)3 > 1 is satisfied, where + and ) are the system volume and temperature, respectively. In
pp and p–Pb collisions, characterised by a smaller volume, this condition is not met and hence a
canonical approach (CSM), with local conservation of quantum numbers, is used. In this work,
the data are compared with the prediction of THERMAL-FIST package [4], in which baryon
number, strangeness content and electric charge are exactly conserved. In the coalescence picture,
nucleons that are close to each other in phase space after chemical freeze-out can form a nucleus
via coalescence [2]. The main observable of the model is the coalescence parameter, defined for a
nucleus of mass number � as

�A =

�A
d3#A
d?3

A(
�p

d3#p

d?3
p

)� , (1)

where the invariant spectra of the (anti)protons are evaluated at the transverse momentum of the
nucleus divided by its mass number, so that ?p

T = ?A
T/�. Through a femptoscopic approach, the

coalescence parameter estimation can be compared to a parameter-free coalescence prediction,
based on the precise description of the nucleus wavefunction and on the size of the emitting
source [5]. Additional information can be extracted from the study of very large and extremely
loosely bound objects such as the hypertriton (3

Λ
H). This nucleus has a large wave function, hence

its production yield in small collision systems is extremely sensitive to the nucleosynthesis models.

2. The ratio between nucleus and proton yields

In Fig. 1, the ratio between the ?T-integrated yields of nuclei and protons are shown for
deuterons (d/p), 3He (3He/p) and 3H (3H/p). Data are compared with the prediction of SHM
obtained with the THERMAL-FIST package and with coalescence calculations [14]. The yield
ratios evolve smoothly as a function of multiplicity. In both panels of Fig. 1, two regimes can be
seen. In the low-multiplicity region, the yield ratios increase with multiplicity. The agreement
of the multiplicity dependence of yield ratios with CSM arises because of canonical suppression,
which is a consequence of conservation of baryon number [4]. In the coalescence picture, the
rise at low multiplicity reflects the interplay between nucleon yield, nucleus size, and source size.
Both CSM and coalescence models can qualitatively describe the ratio between the yields of nuclei
and protons, except for nuclei with � ≥ 3 in the intermediate multiplicity region. In the high-
multiplicity region, the conditions for description using the grand canonical model are valid and
the experimental results show no dependence on multiplicity. The coalescence models also predict
a saturation of the yield ratio at high multiplicity.
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Figure 1: Ratio between the ?T-integrated yields of nuclei and protons for deuterons (d/p) [6–11] (left), 3He
(3He/p [6, 10–13]) and 3H (3H/p [13]) (right). Data are compared with the predictions of the THERMAL-
FIST package [4] and the coalescence model [14].
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Figure 2: Left: �2 [6–11] as a function of 〈 d#ch
d[ 〉 at ?T/� = 0.75 GeV/2. Data are compared with

the predictions of two different parametrisations of the coalescence model. Right: comparison between
measurements and theoretical predictions for the coalescence parameter �2 of (anti)deuterons as a function
of ?T/� [10]. Theoretical predictions are obtained by using different wave functions to describe nuclei:
Gaussian (yellow), Hulthen (blue), jEFT (gray) and two Gaussians (green).

3. The coalescence parameter

The dependence of the coalescence parameter �A on the system size can be studied by mea-
suring for each collision system and energy the value of �A as a function of charged particle
multiplicity 〈d#ch

d[ 〉, which is related to the system size. The left panel of Figure 2 shows �2 as a
function of 〈d#ch

d[ 〉 at ?T/� = 0.75 GeV/2. �2 evolves smoothly as a function of 〈d#ch
d[ 〉, regardless

of the collision system, suggesting a common production mechanism that depends only on the
system size. At low multiplicity the system size is smaller than the nucleus size and �2 slightly
decreases with multiplicity. On the other hand, at high multiplicity the system size becomes larger
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Figure 3: �Λ measurements (left) and 3
Λ
H/Λ ratio (right) measurements in pp (orange), p–Pb [17] (red) and

Pb–Pb collisions [18] (blue) as a function of mean charged-particle multiplicity. The theoretical predictions
are also reported.

than the size of the nucleus and hence the decrease is more noticeable. Therefore, the global trend
observed in the data is described by the coalescence model. Moreover, in high-multiplicity (HM) pp
collisions at a center-of-mass energy

√
B = 13 TeV, the coalescence model is tested by combining the

measurement of the production of light (anti)nuclei [10] with the precise measurement of the source
radius obtained with femtoscopic techniques [15]. Using the formalism described in Ref. [5], it is
possible to compare the experimentally measured coalescence parameter �2 with parameter-free
coalescence predictions, based on the measurement of the emitting source size [15] and the deuteron
wave function [16]. As shown in the right panel of Fig. 2, several wave functions for deuterons are
tested. The Gaussian wave function provides the best description of the currently available ALICE
data, despite the Hulthen one would be favoured by low-energy scattering experiments.

4. Measurement of hypertriton production

A key observable to understand the nuclear production mechanisms in high-energy collisions is
the measurement of hypertriton (3

Λ
H), a bound state of a proton, a neutron, and a Λ baryon. The left

panel of Fig. 3 reports the latest measurement provided by ALICE of the 3
Λ
H binding energy (�Λ).

Since its value is measured to be small (compatible with zero), this bound state is characterized by a
large radius (up to about 10 fm [19, 20]). Therefore, the size of the 3

Λ
Hwave function is much larger

than the hadron emission radius estimated with femtoscopic techniques in small systems (about
1–2 fm [21]). For this reason, the 3

Λ
H yield in pp and p–Pb collisions is strongly affected by its

production mechanism; it is crucial to distinguish between the available nucleosynthesis models. In
the right panel of Fig. 3, the 3

Λ
H-to-Λ ratio measured in pp, p–Pb [17] and Pb–Pb collisions [18] are

compared with the expectations of the theoretical models. The data show a good agreement with the
2-body coalescence predictions, while some tension with SHM at low charged-particle multiplicity
density is observed. In particular, the SHM configuration with a correlation volume equal to three
units of rapidity +C = 3 d+

dH is excluded by more than 6f in the low-multiplicity region.
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