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Hadron Collider. This short contribution aims at giving a review on recent precision calculations
for this important class of reactions. After a survey of fixed-order perturbative calculations the
status of their matching to parton-shower programs is summarized. A brief outlook on new
avenues in the exploration of vector-boson scattering completes the contribution.
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1. Introduction

Vector boson fusion (VBS) processes are at the heart of the physics program of the CERN
Large Hadron Collider (LHC). With their sensitivity to triple and quartic gauge couplings in the
electroweak sector, and to the mechanism of electroweak symmetry breaking itself they are ideally
suited to identify signatures of – or set limits on – physics beyond the Standard Model (SM) in
the EW sector. However, unambiguously identifying hints of new physics in this class of reactions
requires precise predictions in the framework of the SM. Modern calculations accounting for various
types of fixed-order perturbative corrections and parton shower effects are often implemented in
flexible Monte-Carlo programs that can be adapted to the users’ needs. It is the scope of this short
contribution to provide a brief review of such calculations and tools, and urge experimentalists to
implement this state-of-the art machinery in their analyses of LHC data.

2. Precision calculations

At the LHC, VBS processes are accessed in the scattering of (anti-)quarks by the exchange of
EW bosons in the 𝑡 channel with subsequent weak gauge-boson emission. The cleanest signatures
are provided by leptonic decay modes resulting in final states with four leptons (charged leptons
or neutrinos) and two tagging jets. The same final state can result from singly- and non-resonant
diagrams at the sixth order of the EW coupling, but also from QCD contributions and their
interference with the EW production mode, giving rise to tree-level components at O(𝛼2

𝑠𝛼
4) and

O(𝛼𝑠𝛼
5).

Early calculations of the next-to-leading order (NLO) QCD corrections to VBS processes [1–
5] concentrated on the pure EW production mode. They relied on the VBS approximation which
captures the main contributions very well when VBS-specific selection cuts are applied that require
the presence of two tagging jets of large invariant mass and rapidity separation. The actual size of the
NLO-QCD corrections depends on factorization and renormalization scales as well as on the choice
of selection cuts, but is generally moderate. For each VBS channel an implementation is provided in
the framework of the publicly available parton-level Monte-Carlo program VBFNLO [6]. NLO-QCD
corrections to the QCD-induced production of four leptons and two jets have been computed in
Refs. [7–12] and found to significantly reduce the dependence of predictions on factorization and
renormalization scales.

More recently, the NLO-QCD and EW corrections to the various 𝑝𝑝 → 4 leptons + 2 jets
processes have been tackled in full with the help of the amplitude generator RECOLA [13, 14].
In Refs. [15, 16] the complete NLO-QCD and EW corrections to 𝑝𝑝 → 𝜇+𝜈𝜇𝑒+𝜈𝑒 𝑗 𝑗 have been
computed, followed by similar calculations for 𝑝𝑝 → 𝜇−𝜇+𝑒+𝜈𝑒 𝑗 𝑗 [17], 𝑝𝑝 → 𝜇−𝜇+𝑒+𝑒− 𝑗 𝑗 [18,
19], and 𝑝𝑝 → 𝜇+𝜈𝜇𝑒− �̄�𝑒 𝑗 𝑗 [20]. Depending on channel and setup, the size of the EW corrections
can compete with and in some cases even exceed the NLO-QCD corrections.

3. Matching to parton showers

While precision calculations aim at advancing the accuracy of the hard scattering processes,
experimental analyses rely on the versatile machinery of multi-purpose Monte-Carlo generators
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that provide parton showers and features for the description of non-perturbative effects such as
hadronization, underlying event, or multi-parton interactions. A matching of higher-order pertur-
bative corrections with parton showers is thus of paramount importance to allow for, at the same
time, accurate and realistic simulations for scattering processes at hadron colliders. With the advent
of the MC@NLO [21] and POWHEG [22, 23] algorithms for the matching of NLO calculations with
parton showers the theoretical prerequisites for this enterprise have been put in place. Practical
implementations of the POWHEG scheme are possible in the framework of the POWHEG BOX [24]
which provides general routines for the matching of fixed-order calculations with parton showers
and merely requires process-specific elements for each considered scattering process. For the fully
leptonic decay modes of all VBS processes (and for the semi-leptonic decay modes of selected
channels) POWHEG BOX implementations are available. An alternative implementation of the EW
production process 𝑝𝑝 → 𝜇+𝜈𝜇𝑒− �̄�𝑒 𝑗 𝑗 has been presented in Ref. [25] resorting to the HERWIG7
framework [26]. Generally, the parton-shower has little impact on distributions related to the hard
tagging jets comprising the VBS signature, but can significantly affect subleading jets, in partic-
ular, if a sub-optimal recoil scheme is used in the parton-shower generator. The latter effect was
recently discussed for the related process of Higgs production via vector boson fusion and found
to be mitigated in PYTHIA [27–29] when a dipole recoil scheme is used instead of a global recoil
scheme [30].

Employing tools that, at the same time, take into account NLO-QCD corrections and allow for
a matching to parton-shower generators becomes particularly relevant when observables involving
subleading jets are considered or used as input in VBS analyses. Signal-to-background ratios in
VBS searches can be improved by a so-called central jet veto (CJV), i.e. disregarding events that
in addition to the two tagging jets defining the VBS signature feature more hard jets in the central-
rapidity region. Such analyses rely on a precise understanding of the subleading jets’ behavior.
However, if LO matrix elements are employed for the simulation of a VBS process in conjunction
with a parton shower, such subleading jets can be generated only by the parton shower – which by
definition is reliable only in the soft / collinear regions and thus not capable to account for hard jets.
The poor predictive power of such simulations is nicely illustrated by a tuned comparison of LO
tools for the EW 𝜈𝑒𝑒

+𝜇−𝜇+ 𝑗 𝑗 production process [31] which found strongly differing results for
distributions related to a third jet. If NLO-QCD corrections are taken into account, a hard third jet
can also stem from the real-emission contributions. Figure 1 illustrates for a representative setup
(see Ref. [32] for details) how predictions for the rapidity of the third jet in an NLO+PS simulation
exhibit a much milder dependence on details of the parton-shower generator than those reported in
the LO study of Ref. [31] .

A matching of the NLO-EW corrections to the same-sign VBS process with a QED shower in
the context of the POWHEG BOX has been achieved in [33]. In particular, in the tails of transverse-
momentum and invariant-mass distributions such shower effects tend to enhance the negative impact
of the NLO-EW corrections on the corresponding tree-level results.

4. Polarization observables

In the context of the SM, the weak gauge bosons receive their masses and longitudinal polar-
ization degrees of freedom via the Higgs mechanism. The scattering of longitudinal gauge bosons
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Figure 1: Rapidity distribution of the third jet in EW 𝜈𝑒𝑒
+𝜇−𝜇+ 𝑗 𝑗 production at NLO-QCD accuracy

matched with HERWIG7 (red), PYTHIA6 (grey), and PYTHIA8 with either a global (green) or a dipole (blue)
recoil scheme, for two different sets of selection cuts. In the lower panels the ratios of the respective
distributions to the PYTHIA6 reference result are shown. Adapted from Ref. [32].

is unitarized by a subtle interplay between weak boson and Higgs contributions. New physics
affecting this interplay may give rise to unitarity violations in weak boson scattering cross sections.
Directly accessing specific polarization states of the vector bosons thus provides an extra handle on
identifying signatures of new physics in the EW sector.

The definition of specific polarization states is highly non-trivial in the realistic environment
of VBS searches at the LHC. First and foremost, vector bosons are unstable particles that cannot be
directly accessed. Information on their polarization is passed on to their decay products. However,
part of this information is lost unless the respective decay angles are fully integrated over and no
cuts are imposed. Additionally, vector bosons can be produced off-shell. In this case, a momentum
projection onto their mass shell can be applied. In a realistic 𝑝𝑝 → 4 leptons+2 jets process not only
diagrams with two weak gauge bosons decaying into leptons appear, but also non-resonant diagrams
occur. Simply disregarding them would spoil gauge invariance. Finally, since polarization vectors
are not Lorentz covariant, a particular reference frame must be chosen. Despite these technical
complications some progress has been made in the simulation of polarization observables in VBS
processes [34–37].

5. Conclusions and outlook

VBS processes represent a class of reactions crucial to an understanding of the electroweak
sector of the SM and to identifying possible signatures of new physics in this domain. Despite
the technical complexity represented by a scattering process with as many as six particles in the
final state at tree level already, a wealth of advanced precision calculations exists accounting for
NLO-QCD and EW corrections as well as for parton-shower effects. Public tools are available
for the simulation of all production channels with fully leptonic and for selected semi-leptonic and
hadronic decay modes. They can unfold their full potential only if used in all experimental analyses.
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