PROCEEDINGS OF SCIENCE

PoS

Modelling uncertainties of $t\bar{t}W$ in multi-lepton channel

Jasmina Nasufi^{a,*}

^a Institute for Theoretical Particle Physics and Cosmology RWTH-Aachen University, D-52056 Aachen, Germany

E-mail: jasmina.nasufi@rwth-aachen.de

We compare fixed order and parton shower matched predictions for the process $pp \rightarrow \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell \ell^\pm \bar{\nu}_\ell b\bar{b} + X$ at NLO in QCD, including the orders $O(\alpha_s^3 \alpha^6)$ and $O(\alpha_s \alpha^8)$. The comparison is performed at the integrated and differential fiducial level at the LHC with $\sqrt{s} = 13$ TeV. In the absence of parton shower matching procedure that includes the full off-shell effects for this process at NLO in QCD, we propose a new prescription. It enables the inclusion of approximate full off-shell effects to currently available parton shower matched predictions at NLO in QCD.

The Tenth Annual Conference on Large Hadron Collider Physics - LHCP2022 16-20 May 2022 online

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The associated production of a top pair and a W^{\pm} gauge boson is an important SM process. It displays a rich phenomenology as a signal process, with applications such as the charge asymmetry [1–3]. Furthermore, it is the dominant background to $t\bar{t}H$ in the multi-lepton decay channels [4–7]. Despite good agreement in the SM, a slight tension between experimental measurements and theoretical predictions has been persistently apparent in comparisons so far. This has been attributed to mis-modelling of the process on the theory side. Thus, with the purpose of improving on current theory predictions, we present a direct comparison of state-of-the-art fixed order and parton shower matched predictions in ref. [8]. Additionally we also propose a prescription, which aims to combine the best aspects of the modelling approaches.

2. Analysis Setup

We present predictions for $pp \rightarrow \ell^+ v_\ell \ell^- \bar{v}_\ell \ell^\pm \bar{v}_\ell b\bar{b} + X$ at NLO in QCD. Here ℓ labels $\ell \in \{e, \mu\}$ The calculation includes two main contributions, which can be categorized by the coupling order: the NLO QCD correction to the QCD Born at order $O(\alpha_s^3 \alpha^6)$ and the NLO QCD corrections to the pure EW Born $O(\alpha_s \alpha^8)$. For ease of notation, they will be labelled $t\bar{t}W$ QCD and $t\bar{t}W$ EW respectively. We provide fixed order predictions and parton shower matched predictions (NLO+PS). Fixed order predictions include full off-shell predictions, the full NWA and NWA with LO decays. They are generated using the HELAC-NLO software [9–15]. Parton shower matched predictions are generated via POWHEG-Box [16–22] and MG5_aMC@NLO [23–26]. Various details are considered to align fixed order and parton shower matched predictions. These are discussed in detail in [8].

3. Results

Results for the integrated fiducial cross section are shown in table 1. The subleading $t\bar{t}W$ EW contribution is sizeable and around 13% of the dominant $t\bar{t}W$ QCD contribution. The full off-shell effects amount to 0.1% for $t\bar{t}W$ QCD and a surprising 9% for $t\bar{t}W$ EW. The enhancement for $t\bar{t}W$ EW is due to $WW \rightarrow WW$ scattering diagrams. The size of NLO QCD corrections to the decays is -6% for $t\bar{t}W$ QCD and +15% for $t\bar{t}W$ EW. Neglecting NLO QCD corrections to the

$t\bar{t}W^{\pm}$	$t\bar{t}W$ QCD	$t\overline{t}W$ EW
Full off-shell	$1.58^{+3\%}_{-6\%}$	$0.206^{+22\%}_{-17\%}$
NWA	$1.57^{+3\%}_{-6\%}$	$0.190^{+22\%}_{-16\%}$
NWA _{LOdec}	$1.66^{+10\%}_{-10\%}$	$0.162^{+22\%}_{-16\%}$
Powheg-Box	$1.40^{+11\%}_{-11\%}$	$0.133^{+21\%}_{-16\%}$
MG5_aMC@NLO	$1.40^{+11\%}_{-11\%}$	$0.136^{+21\%}_{-6\%}$

Table 1: Integrated fiducial cross sections for $pp \to \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell \ell^\pm \bar{\nu}_\ell b\bar{b} + X$ at NLO in QCD at order $O(\alpha_s^3 \alpha^6)$ and $O(\alpha_s \alpha^8)$) for various modelling approaches.

Figure 1: Differential fiducial cross section for $pp \rightarrow \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell \ell^\pm \bar{\nu}_\ell b\bar{b} + X$ at NLO in QCD at order $O(\alpha_s^3 \alpha^6)$ (left) and $O(\alpha_s \alpha^8)$ (right). The first panel displays absolute predictions for various modelling approaches, whereas the second panel shows the ratio to the full off-shell predictions with scale uncertainty bands. The last panel displays matching uncertainties for NLO+PS predictions.

decays also impacts the size of the theoretical scale uncertainty for $t\bar{t}W$ QCD. It increases from at most 6% for full off-shell predictions and the full NWA, to 10% for NWA_{LOdec}. On the other hand, the scale uncertainty for $t\bar{t}W$ EW is unaffected by the modelling and it is LO like, due to the non-trivial α_s dependence appearing at NLO. Parton shower matched predictions generated with PowHEG-Box and MG5_aMC@NLO are in perfect agreement with each other. They exhibit a similar scale dependence to NWA_{LOdec} for both $t\bar{t}W$ QCD and $t\bar{t}W$ EW. Compared to fixed order predictions, NLO+PS predictions have a smaller central value because of the multiple radiations. Differential predictions for the transverse momentum of the two hardest *b*-jet system for $t\bar{t}W$ QCD and $t\bar{t}W$ EW are displayed in figure 1. Full off-shell predictions have a harder high p_T spectrum due to single-resonant contributions, which are not present in any of the other modelling approaches. The discrepancies are more pronounced for $t\bar{t}W$ EW, where the scale uncertainty bands do not overlap. Parton shower matched predictions agree well with each other within scale and matching uncertainties.

	$t\bar{t}W^{\pm}$ QCD+EW
Full off-shell	$1.79^{+6\%}_{-7\%}$
NLO+PS	$1.53^{+12\%}_{-11\%}$
NLOPS+ $\Delta \sigma$	$1.56^{+13\%}_{-13\%}$

Table 2: Integrated fiducial cross sections for $pp \to \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell \ell^\pm \bar{\nu}_\ell b\bar{b} + X$ at NLO in QCD at order $O(\alpha_s^3 \alpha^6)$ and $O(\alpha_s \alpha^8)$) for various modelling approaches.

Figure 2: Differential fiducial cross section for $pp \rightarrow \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell \ell^\pm \bar{\nu}_\ell b\bar{b} + X$ at NLO in QCD including both dominant coupling orders. The first panel shows absolute predictions for various modelling approaches, whereas the second panel shows the ratio to the full off-shell predictions with scale uncertainty bands. The last panel displays the sub-leading $t\bar{t}W$ EW contribution in the ratio.

Parton shower matched predictions can be improved by including full off-shell effects according to:

$$\frac{d\sigma^{\text{th}}}{dX} = \frac{d\sigma^{\text{NLO+PS}}}{dX} + \frac{d\Delta\sigma_{\text{off-shell}}}{dX}, \qquad \frac{d\Delta\sigma_{\text{off-shell}}}{dX} = \frac{d\sigma^{\text{NLO}}_{\text{off-shell}}}{dX} - \frac{d\sigma^{\text{NLO}}_{\text{NWA}}}{dX}$$
(1)

where $\Delta \sigma_{\text{off-shell}}$ is constructed by removing the double resonant contributions from the full offshell predictions in an approximate way. This prescription has a small impact on the integrated fiducial cross section, which increases by about 2%. We expect to see bigger contributions from $\Delta \sigma_{\text{off-shell}}$ at the differential level. For this purpose, in figure 2 we show the tranverse momentum of the hardest *b*-jet on the left and of the opposite-sign lepton on the right. The improved NLOPS+ $\Delta \sigma$ predictions in the bulk of the distributions, whereas towards the high p_T tails they receive full off-shell contributions. These contributions impact *b*-jet observables more than lepton observables.

4. Conclusions

In conclusion, in the absence of a resonance aware matching of full off-shell predictions to parton showers at NLO in QCD, we suggest the prescription in eq. (1) for comparisons with unfolded experimental data.

Acknowledgements

The work of Jasmina Nasufi was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant 396021762 - TRR 257: P3H - Particle Physics Phenomenology after the Higgs Discovery and under grant 400140256 - GRK 2497: The physics of the heaviest particles at the Large Hadron Collider.

Jasmina Nasufi

References

- [1] F. Maltoni, M. Mangano, I. Tsinikos and M. Zaro, *Top-quark charge asymmetry and* polarization in $t\bar{t}W^{\pm}$ production at the LHC, Phys. Lett. B **736** (2014) 252 [1406.3262].
- [2] R. Frederix, I. Tsinikos and T. Vitos, Probing the spin correlations of tī production at NLO QCD+EW, Eur. Phys. J. C 81 (2021) 817 [2105.11478].
- [3] G. Bevilacqua, H.-Y. Bi, H. B. Hartanto, M. Kraus, J. Nasufi and M. Worek, *NLO QCD corrections to off-shell t*T^{W[±]} production at the LHC: correlations and asymmetries, Eur. *Phys. J. C* **81** (2021) 675 [2012.01363].
- [4] ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [1806.00425].
- [5] CMS collaboration, Observation of ttH production, Phys. Rev. Lett. 120 (2018) 231801 [1804.02610].
- [6] ATLAS COLLABORATION collaboration, Analysis of $t\bar{t}H$ and $t\bar{t}W$ production in multilepton final states with the ATLAS detector, tech. rep., CERN, Geneva, 2019.
- [7] CMS collaboration, *Higgs boson production in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at* $\sqrt{s} = 13$ TeV, .
- [8] G. Bevilacqua, H. Y. Bi, F. Febres Cordero, H. B. Hartanto, M. Kraus, J. Nasufi et al., Modeling uncertainties of tīW[±] multilepton signatures, Phys. Rev. D 105 (2022) 014018 [2109.15181].
- [9] A. Cafarella, C. G. Papadopoulos and M. Worek, *Helac-Phegas: A Generator for all parton level processes, Comput. Phys. Commun.* 180 (2009) 1941 [0710.2427].
- [10] A. van Hameren, C. Papadopoulos and R. Pittau, Automated one-loop calculations: A Proof of concept, JHEP 09 (2009) 106 [0903.4665].
- [11] M. Czakon, C. Papadopoulos and M. Worek, *Polarizing the Dipoles*, *JHEP* 08 (2009) 085 [0905.0883].
- [12] G. Ossola, C. G. Papadopoulos and R. Pittau, *CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes*, *JHEP* 03 (2008) 042 [0711.3596].
- [13] G. Bevilacqua, M. Czakon, M. Garzelli, A. van Hameren, A. Kardos, C. Papadopoulos et al., *HELAC-NLO, Comput. Phys. Commun.* 184 (2013) 986 [1110.1499].
- [14] G. Bevilacqua, M. Czakon, M. Kubocz and M. Worek, Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD, JHEP 10 (2013) 204 [1308.5605].
- [15] M. Czakon, H. B. Hartanto, M. Kraus and M. Worek, *Matching the Nagy-Soper parton shower at next-to-leading order*, *JHEP* 06 (2015) 033 [1502.00925].

- [16] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146].
- [17] S. Frixione, P. Nason and C. Oleari, *Matching NLO QCD computations with Parton Shower simulations: the POWHEG method*, JHEP 11 (2007) 070 [0709.2092].
- [18] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198].
- [19] M. Garzelli, A. Kardos, C. Papadopoulos and Z. Trocsanyi, $t\bar{t}W^{\pm}$ and $t\bar{t}Z$ Hadroproduction at NLO accuracy in QCD with Parton Shower and Hadronization effects, JHEP **11** (2012) 056 [1208.2665].
- [20] S. Honeywell, S. Quackenbush, L. Reina and C. Reuschle, NLOX, a one-loop provider for Standard Model processes, Comput. Phys. Commun. 257 (2020) 107284 [1812.11925].
- [21] F. Febres Cordero, M. Kraus and L. Reina, *Top-quark pair production in association with a W[±] gauge boson in the POWHEG-BOX, Phys. Rev. D* 103 (2021) 094014 [2101.11808].
- [22] D. Figueroa, S. Quackenbush, L. Reina and C. Reuschle, Updates to the one-loop provider NLOX, Comput. Phys. Commun. 270 (2022) 108150 [2101.01305].
- [23] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244].
- [24] S. Frixione, P. Nason and B. R. Webber, *Matching NLO QCD and parton showers in heavy flavor production*, *JHEP* 08 (2003) 007 [hep-ph/0305252].
- [25] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [1212.3460].
- [26] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, *JHEP* 07 (2014) 079 [1405.0301].