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We compare fixed order and parton shower matched predictions for the process
𝑝𝑝 → ℓ+aℓℓ− āℓℓ±

(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD, including the orders O(𝛼3𝑠𝛼6) and O(𝛼𝑠𝛼
8). The

comparison is performed at the integrated and differential fiducial level at the LHC with
√
𝑠 = 13

TeV. In the absence of parton shower matching procedure that includes the full off-shell effects
for this process at NLO in QCD, we propose a new prescription. It enables the inclusion of
approximate full off-shell effects to currently available parton shower matched predictions at NLO
in QCD.

The Tenth Annual Conference on Large Hadron Collider Physics - LHCP2022
16-20 May 2022
online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:jasmina.nasufi@rwth-aachen.de
https://pos.sissa.it/


P
o
S
(
L
H
C
P
2
0
2
2
)
2
1
6

Modelling uncertainties of 𝑡𝑡𝑊 in multi-lepton channel Jasmina Nasufi

1. Introduction

The associated production of a top pair and a 𝑊± gauge boson is an important SM process. It
displays a rich phenomenology as a signal process, with applications such as the charge asymmetry
[1–3]. Furthermore, it is the dominant background to 𝑡𝑡𝐻 in the multi-lepton decay channels
[4–7]. Despite good agreement in the SM, a slight tension between experimental measurements
and theoretical predictions has been persistently apparent in comparisons so far. This has been
attributed to mis-modelling of the process on the theory side. Thus, with the purpose of improving
on current theory predictions, we present a direct comparison of state-of-the-art fixed order and
parton shower matched predictions in ref. [8]. Additionally we also propose a prescription, which
aims to combine the best aspects of the modelling approaches.

2. Analysis Setup

We present predictions for 𝑝𝑝 → ℓ+aℓℓ−āℓℓ±
(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD. Here ℓ labels ℓ ∈ {𝑒, `}
The calculation includes two main contributions, which can be categorized by the coupling order:
the NLO QCD correction to the QCD Born at order O(𝛼3𝑠𝛼6) and the NLO QCD corrections to
the pure EW Born O(𝛼𝑠𝛼

8). For ease of notation, they will be labelled 𝑡𝑡𝑊 QCD and 𝑡𝑡𝑊 EW
respectively. We provide fixed order predictions and parton shower matched predictions (NLO+PS).
Fixed order predictions include full off-shell predictions, the full NWA and NWA with LO decays.
They are generated using the Helac-Nlo software [9–15]. Parton shower matched predictions are
generated via Powheg-Box [16–22] and MG5_aMC@NLO [23–26]. Various details are consid-
ered to align fixed order and parton shower matched predictions. These are discussed in detail in [8].

3. Results

Results for the integrated fiducial cross section are shown in table 1. The subleading 𝑡𝑡𝑊 EW
contribution is sizeable and around 13% of the dominant 𝑡𝑡𝑊 QCD contribution. The full off-shell
effects amount to 0.1% for 𝑡𝑡𝑊 QCD and a surprising 9% for 𝑡𝑡𝑊 EW. The enhancement for
𝑡𝑡𝑊 EW is due to 𝑊𝑊 → 𝑊𝑊 scattering diagrams. The size of NLO QCD corrections to the
decays is −6% for 𝑡𝑡𝑊 QCD and +15% for 𝑡𝑡𝑊 EW. Neglecting NLO QCD corrections to the

𝑡𝑡𝑊± 𝑡𝑡𝑊 QCD 𝑡𝑡𝑊 EW
Full off-shell 1.58+3%−6% 0.206+22%−17%
NWA 1.57+3%−6% 0.190+22%−16%
NWALOdec 1.66+10%−10% 0.162+22%−16%
Powheg-Box 1.40+11%−11% 0.133+21%−16%
MG5_aMC@NLO 1.40+11%−11% 0.136+21%−6%

Table 1: Integrated fiducial cross sections for 𝑝𝑝 → ℓ+aℓℓ− āℓℓ±
(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD at order O(𝛼3𝑠𝛼6)
and O(𝛼𝑠𝛼

8) ) for various modelling approaches.
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Figure 1: Differential fiducial cross section for 𝑝𝑝 → ℓ+aℓℓ− āℓℓ±
(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD at order
O(𝛼3𝑠𝛼6) (left) and O(𝛼𝑠𝛼

8) (right). The first panel displays absolute predictions for various modelling
approaches, whereas the second panel shows the ratio to the full off-shell predictions with scale uncertainty
bands. The last panel displays matching uncertainties for NLO+PS predictions.

decays also impacts the size of the theoretical scale uncertainty for 𝑡𝑡𝑊 QCD. It increases from
at most 6% for full off-shell predictions and the full NWA, to 10% for NWALOdec. On the other
hand, the scale uncertainty for 𝑡𝑡𝑊 EW is unaffected by the modelling and it is LO like, due to
the non-trivial 𝛼𝑠 dependence appearing at NLO. Parton shower matched predictions generated
with Powheg-Box and MG5_aMC@NLO are in perfect agreement with each other. They exhibit
a similar scale dependence to NWALOdec for both 𝑡𝑡𝑊 QCD and 𝑡𝑡𝑊 EW. Compared to fixed order
predictions, NLO+PS predictions have a smaller central value because of the multiple radiations.
Differential predictions for the transverse momentum of the two hardest 𝑏-jet system for 𝑡𝑡𝑊 QCD
and 𝑡𝑡𝑊 EW are displayed in figure 1. Full off-shell predictions have a harder high 𝑝𝑇 spectrum due
to single-resonant contributions, which are not present in any of the other modelling approaches.
The discrepancies are more pronounced for 𝑡𝑡𝑊 EW, where the scale uncertainty bands do not
overlap. Parton shower matched predictions agree well with each other within scale and matching
uncertainties.

𝑡𝑡𝑊± QCD+EW
Full off-shell 1.79+6%−7%
NLO+PS 1.53+12%−11%
NLOPS+Δ𝜎 1.56+13%−13%

Table 2: Integrated fiducial cross sections for 𝑝𝑝 → ℓ+aℓℓ− āℓℓ±
(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD at order O(𝛼3𝑠𝛼6)
and O(𝛼𝑠𝛼

8) ) for various modelling approaches.
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Figure 2: Differential fiducial cross section for 𝑝𝑝 → ℓ+aℓℓ− āℓℓ±
(—)

aℓ𝑏�̄� + 𝑋 at NLO in QCD including both
dominant coupling orders. The first panel shows absolute predictions for various modelling approaches,
whereas the second panel shows the ratio to the full off-shell predictions with scale uncertainty bands. The
last panel displays the sub-leading 𝑡𝑡𝑊 EW contribution in the ratio.

Parton shower matched predictions can be improved by including full off-shell effects according to:

𝑑𝜎th

𝑑𝑋
=

𝑑𝜎NLO+PS

𝑑𝑋
+ 𝑑Δ𝜎off−shell

𝑑𝑋
,

𝑑Δ𝜎off−shell
𝑑𝑋

=
𝑑𝜎NLOoff−shell

𝑑𝑋
−
𝑑𝜎NLONWA
𝑑𝑋

(1)

where Δ𝜎off−shell is constructed by removing the double resonant contributions from the full off-
shell predictions in an approximate way. This prescription has a small impact on the integrated
fiducial cross section, which increases by about 2%. We expect to see bigger contributions from
Δ𝜎off−shell at the differential level. For this purpose, in figure 2 we show the tranverse momentum of
the hardest 𝑏-jet on the left and of the opposite-sign lepton on the right. The improved NLOPS+Δ𝜎
predictions in the bulk of the distributions, whereas towards the high 𝑝𝑇 tails they receive full
off-shell contributions. These contributions impact 𝑏-jet observables more than lepton observables.

4. Conclusions

In conclusion, in the absence of a resonance aware matching of full off-shell predictions to parton
showers at NLO in QCD, we suggest the prescription in eq. (1) for comparisons with unfolded
experimental data.
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