
P
o
S
(
L
H
C
P
2
0
2
2
)
2
5
5

Intrinsic quantum mechanics behind the Standard
Model? - predictions in the baryon and Higgs
sectors

Ole L. Trinhammer∗†
Department of Physics, Technical University of Denmark,
Fysikvej bld 307, 2800 Kongens Lyngby, Denmark
E-mail: ole.trinhammer@fysik.dtu.dk

I introduce quantum mechanics on an intrinsic configuration space for baryons, the Lie group
U(3), which carries the three gauge groups of the standard model of particle physics as subgroups
SU(3), SU(2) and U(1). The strong and electroweak interactions become related via the Higgs
mechanism. I namely settle the electroweak energy scale by the neutron to proton decay where
both sectors are involved through quark flavour changes. Predictions of neutral pentaquark reso-
nances reachable at LHCb follow in the baryon sector as does an accurate expression in the elec-
troweak sector for the Higgs mass (yielding 125.104(14) GeV) and predictions on the couplings
of the Higgs to itself and to the gauge bosons with signal strengths deviating by the presence
of the up down quark mixing matrix element. The intrinsic view means that quantum fields are
generated by the momentum form on intrinsic wavefunctions and local gauge transformations in
laboratory space equate translations in the intrinsic configuration space which may be likened to a
generalised spin space. Further insight is gained for the Cabibbo and Weinberg angles expressed
in traces of u and d flavour quark generators.
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1. Introduction

The present proceedings contribution sums up work by the author to go behind the Standard
Model of particle physics. It wants to understand wherefrom the structure, the gauge groups, the
energy scales and other fundamental parameters originate. It does not want to go beyond the
Standard Model in the sense of predicting brand new particles. Rather it wants to understand
the structure of the Standard Model [1] as a quantum field theory with its specific gauge groups
originating in an intrinsic configuration space for baryon mass eigenstates.

It offers results on the baryon spectrum [2], the Higgs mass [3, 4], its self coupling and cou-
pling to gauge bosons [5]. It gives insight to the Cabibbo and Weinberg angles [6] and possibly an
explanation for the values of the u and d quark masses [2]. These results cannot be derived within
the Standard Model, where they all rely on experimental input. The experimental inputs for the
present work, however, are limited to the electron mass and the sliding scale fine structure coupling
α (depending though on fermion mass inputs). The major results then more or less follow from
the specific choice of the Lie group U(3) as configuration space for baryonic mass eigenstates.
This configuration space contains all three gauge groups SU(3), SU(2) and U(1) as subspaces. The
Higgs mechanism is linked to a symmetry break in the strong interaction sector which selects the
subspace U(2) spontaneously and shapes the Higgs potential from within the U(3) configuration
in the baryon sector. This link settles the electroweak energy scale by the neutron to proton decay
where both strong and electroweak sectors are involved through quark flavour changes.

2. The baryon sector

We consider baryons to be eigenstates of the following mass Hamiltonian [2, 7, 8, 9] with
mc2 = E

h̄c
a

[
−1

2
∆+

1
2

Tr χ
2
]

Ψ(u) = E Ψ(u), u = eiχ ∈U(3). (2.1)

The configuration variable u is generated by nine kinematic generators Tj,S j,M j, thus

χ = (aθ j p j +α jS j +β jM j)/h̄, p j ≡−ih̄
1
a

∂

∂θ j
=

h̄
a

Tj, θ j,α j,β j ∈ R, j = 1,2,3 (2.2)

where eiθ j are the three eigenvalues of u and θ j are dynamical angular variables and a is a length
scale. We interpret the three toroidal dimensions as colour degrees of freedom. The toroidal gen-
erators Tj for the abelian subspace diag

(
eiθ1 ,eiθ2 ,eiθ3

)
are conjugate to the angular variables, i.e.

[iTj,θi] = δi j ∼ dθi(∂ j) = δi j, ∂ j|u = uiTj, (2.3)

where ∂ j are left invariant coordinate fields on U(3) and dθ j are corresponding coordinate forms,
see e.g. pp. 84 in [10]. We see the Tjs as generated from laboratory space by the three momentum
operators p j. Likewise the spin degrees of freedom are generated by the set of three S js, e.g.
S3 = aθ1 p2−aθ2 p1, and the mixing operators M j contain flavour degrees of freedom mixed with
spin. The configuration variable u ∈U(3) may thus be seen as a generalised intrinsic spin variable
[11]. Equation (2.1) is solved accurately in [2] for neutral electric charge states yielding an accurate
neutron mass value, and solved approximately for charged states with a promising neutral flavour
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baryon spectrum and a promising neutron to proton mass shift together with a proton spin structure
function that matches the experimental data over four orders of magnitude, see fig. 1. Further,
scarce neutral flavour neutral charge resonances are predicted that might be reachable at LHCb.

3. Neutron mass and decay - Higgs mass and couplings

The neutral charge ground state of (2.1) is identified with the neutron [7]. In [2] we present in
details the solution by a Rayleigh-Ritz method (diagonalisation of the Hamiltonian) that yields

mnc2 = EΛ = E
π

α(mn)
mec2 = 939.9(5) MeV≈ 939.56542052(54) MeV [1]. (3.1)

The energy scale Λ= h̄c/a= π

α
mec2≈ 214 MeV in (2.1) is set by the length scale a (toroidal radius)

that projects to the classical electron radius re [12, 13] as πa= re [7]. The dimensionless eigenvalue
E≡ E /Λ is found quite accurately as E = 4.382(2) since the integrals needed for diagonalising the
Hamiltonian can be found analytically. The same length scale a is involved in the relation from
laboratory space coordinates x j to intrinsic configuration space toroidal angles

θ j = x j/a (3.2)

and thus sets the scale of the neutral flavour baryon spectrum.
The neutron decay

n→ p+ e+ ν̄e (3.3)

offers a common ground for the strong and electroweak interactions since the baryonic state under-
goes a change when a d-quark is transformed into a u-quark. We interpret the charged ground state
of (2.1) as the proton. It involves period doublings in the toroidal angles interpreted as topological
charge. The topological change in the wavefunction is carried by Bloch wave phase factors [14]
allowed by the periodicity of the potential in (2.1) and by degrees of freedom opened by the Higgs
mechanism. The Higgs potential VH is scaled by an exchange of one unit of (space) action hc from
the strong interaction sector to the electroweak sector [3, 4] with Higgs field vacuum expectation
value ϕ0 during the period doubling [7] from 2π periodicity to 4π periodicity in the strong sector

2πΛ = αϕ0 ∼ hc = αϕ0a. (3.4)

The neutron decay involves a virtual W− boson for the d to u quark transformation and we choose
the fine structure coupling scale of α in (3.4) accordingly. We then have

v/
√

2≡ ϕ0 =
2π

α(mw)
Λ =

2π

α(mw)

π

αe
mec2 = 176.924(20) GeV. (3.5)

With Fermi constants GFβ = GFµ |Vud |, the electroweak energy scale of the Standard Model vSM ≈
v
√
|Vud |= 246.86(5) GeV≈ 246.21964(6) GeV [1]. Shaping VH troughs by 1

2 Tr χ2 in (2.1) [3, 4]

µ
2 =

1
2

ϕ
2
0 → mHc2 = µ =

1√
2

ϕ0 = 125.104(14) GeV≈ 125.25(17) GeV [1]. (3.6)

From the Higgs potential fitting to 1
2 Tr χ2 and from the Higgs mechanism we further predict [5, 15]

the Higgs to gauge boson V =W,Z couplings and the Higgs self couplings to expect signal strengths

µHVV =

(
gHVV

gHVV,SM

)2

=

(
v

vSM

)2

=
1
|Vud |

≈ 1.03, µHHHH = |Vud |2≈
1

1.06
, µHHH = |Vud | ≈

1
1.03

.

(3.7)

2



P
o
S
(
L
H
C
P
2
0
2
2
)
2
5
5

Intrinsic quantum mechanics - predictions Ole L. Trinhammer

4. Quark fields and masses, proton spin structure, Cabibbo and Weinberg angles

Quark and gluon fields are created when the momentum form of either the toroidal measure-
scaled wavefundtion R acts on combinations of toroidal generators [7] or when the momentum
form dΦ of the full measure-scaled wavefunction Φ = JΨ ≡ R(θ1,θ2,θ3)ϒ(α1,α2,α3,β1,β2,β3)

acts on the eight Gell-Mann generators λk [2, 17]. Here J(θ1,θ2,θ3) is a Jacobian in the Laplacian
∆ in (2.1) [16]. Thus, colour fields ψ j, flavour fields ψq and gluon fields Gk are generated as

ψ j(u) = dRu(iTj)≡
d

dθ
R(ueθ iTj)|θ=0, ψq(u) = dRu(iTq), Gk(u) = dΦu(iλk/2). (4.1)

The flavour quark generators Tq of the first two generations are

Tu =
2
3

T1−T3, Td =−1
3

T1−T3, Ts =−
1
3

T1, Tc =
2
3

T1. (4.2)

Since the wavefunction in (2.1) lives on the compact configuration space U(3), the quarks and
gluons are confined per construction. Using the u and d flavour quark generators from (4.2) for
parton distributions, we get the proton spin structure function shown as the solid curve in figure 1.

Figure 1: Spin structure function of the proton (solid line) - with no fitting parameters - from an exemplar
calculation [2] based on flavour quarks derived from an intrinsic U(3) configuration overlaid on experimental
data [18] spanning four orders of magnitude in parton momentum fraction x. Figure from [2].

We suggest u and d masses to reflect intrinsic Gaussian curvatures Kq = 1/r2
q on the configu-

ration space weighted by the probability density in the intrinsic protonic wavefunction R. Thus - in
analogy with mec2 = e2

4πε0

h̄c
re

- averaging over three colours - we get [2]

muc2 =
(gs/3)2

4π

h̄c
ru

= 4.0(2) MeV, mdc2 =
αs

9
h̄c
rd

= 8.7(3) MeV @ αs(2 GeV)= 0.305 [1]. (4.3)

When the sum over colour states is made explicit [19] in the amplitude for the strange decay
Λ→ p+π−, we derive for the Cabibbo angle θC and the Weinberg angle θW respectively [6]

sinθC = Tr T †
u Ts =−

2
9
→ cosθC =

√
77
81
≈ |Vud |, cos2

θW = Tr T †
u Td =

7
9
≈ 0.7769(3) =

m2
W

m2
Z
[1].

(4.4)
Left invariant translations from the origo e in the intrinsic configuration space equates local gauge
transformations in laboratory space [2, 20, 21] (in [21] less abstractly than here from [2])

ψ j(u) = ∂ j|u[Φ] = u∂ j|e[Φ] = uψ j(e). (4.5)

5. Conclusion

A wide list of results and new interpretations follow from intrinsic quantum mechanics.
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