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Physics and effects of relativistic SEPs/GLEs
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Systematic study of relativistic solar energetic particles provides key information about various
processes, such as production and acceleration of energetic particles at the Sun and the interplane-
tary medium, interactions of energetic particles with magnetic fields in the heliosphere i.e. probing
the electromagnetic and plasma conditions of the heliosphere, assessment of their terrestrial and
space weather effects. Following solar eruptive processes, such as solar flares and/or coronal mass
ejections solar ions are accelerated to a high-energy range. In the majority of cases, the maximum
energy of the accelerated solar ions is several tens of MeV/nucleon, but in some cases, it exceeds
100 MeV/nucleon or even reaches GeV/nucleon range. In this case, the energy is enough high,
so that solar ions generate an atmospheric cascade in the Earth’s atmosphere, whose secondary
particles reach the ground, eventually registered by ground-based detectors, specifically neutron
monitors. This particular class of events is known as ground-level enhancements (GLEs). Here
we report recent achievements related to the physics of relativistic SEPs/GLEs, their observations,
and the related terrestrial and space weather effects.

27th European Cosmic Ray Symposium - ECRS
25-29 July 2022
Nĳmegen, the Netherlands

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:alexander.mishev@oulu.fi
https://pos.sissa.it/


P
o
S
(
E
C
R
S
)
0
1
6

Physics of relativistic SEPs/GLEs Alexander Mishev

1. Introduction

It is known that occasionally following solar eruptive processes such as solar flares and/or
coronal mass ejections (CMEs) our nearest star - the Sun accelerates particles, namely protons,
electrons, and heavier nuclei, the latter specifically He-Fe, from a few keV up to the GeV energy
range [1]. Those particles observed in the interplanetary space as well as in the vicinity of the Earth
are commonly referred to as solar energetic particles (SEPs) [2].

Methodological studies of SEPs provide the necessary basis to reveal fundamental questions
related to the ion acceleration on the Sun, where a specific interest is paid to particles with energy
reaching about GeV/nucleon or even greater values, that is strong and relativistic ones, which
can produce secondary particles in the Earth’s atmosphere eventually registered by convenient
ground-based detectors, 𝑒.𝑔. neutron-monitors (NMs) [3]. This type of SEP events is known as
ground level enhancements (GLEs) [4, 5]. Moreover, SEPs, specifically those leading to GLEs, are
among the important aspects of solar-terrestrial physics, as well as are closely related to important
space weather effects such as the enhanced atmospheric ionization, complex radiation environment
specifically at flight altitudes and near space [6–8]. Here we discuss several recent achievements
related to the physics, terrestrial and, space weather effects of relativistic SEPs/GLEs.

2. Progress in physics of relativistic SEPs/GLEs

Over the last two decades, the ruling paradigm of SEP origin was that they are produced
by the sudden release of accumulated magnetic energy during solar eruptions, specifically, those
accelerated at flares are referred to as impulsive events, while particles accelerated by near-Sun
CME-driven shocks as gradual events Fig.1 1 [1, 9]. The gradual events typically lasted several
days and exhibit larger fluence compared to the impulsive ones. They are proton-rich, had average
Fe/O ratios of 0.1, and are associated with type II radio bursts. The impulsive events lasted a few
hours and usually possess smaller fluences, are electron-rich, and associated with type III radio
bursts.

Even good progress in understanding the SEP acceleration was achieved, yet there are several
open questions, specifically about the relative role of flares and CME-driven shocks in the particle
energization and to explain the prolonged X-ray and 𝛾- emissions, results by electrons colliding with
ambient ions for the former and ions interacting with the dense layers above the solar surface for the
latter [10]. Note, that GLEs exhibit shorter duration compared to gradual SEP events and are usually
accompanied by both strong solar flares and fast and wide CMEs. Morphological studies suggest
two components: a prompt component (PC) associated with solar flares, typically beam-like, that
is with narrow angular distribution, which is followed by a delayed component (DC) resulting
from shock/CME acceleration of particles [11], naturally with isotropic-like angular distribution.
An important feature is the different spectral shapes of the PC and DC, usually approximated
with exponent and power-law in energy/rigidity, respectively, yet different spectral shapes are also
proposed.

Recently, based on on-situ observations and phenomenological studies, in fact, an evolution
of a previously proposed mechanism was proposed by several teams [12, 13]. It was suggested
that both mechanisms appear to contribute, with one accelerating mechanism operating in the
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Figure 1: Long-ruled paradigm of flare/impulsive–CME shock/gradual acceleration of SEPs. The upper
left panel depicts gradual SEP events resulting from diffusive acceleration at CME-driven shocks. The
upper right panel depicts impulsive SEP events which are produced by solar flares. Accordingly, the lower
panels represent gradual and impulsive SEP events. Adapted from [1] permission for reuse from author and
publisher Springer according to license CC BY 4.0.

flare while the other operates at the CME-driven shock, including re-acceleration of remnant flare
suprathermals by shockwaves or from the interaction of CMEs. For instance, as depicted in Fig.
2 the impulsive phase of the solar flare comprises an outburst, causing also a global coronal wave
and during the eruption as such, the PC of particles is accelerated, comprising partially also the
seed population of the re-accelerating particles. Some of the particles can be trapped and lately
eventually reaccelerated. The partial trapping of the relativistic SEPs can be it in the loops at
low altitudes and/or in the flux rope rising above, a plausible scenario to explain a long-duration
𝛾-emission form pion-decay.

The injection of relativistic protons occurs upon the CME arrival at the top sections of helmet
streamers and concurrently with the lateral expansion of CME at its right flank, the latter responsible
for the prolonged emission, yet the shocks can contribute to the DC, specifically for low-energy
populations at several solar radii.

Such hybrid mechanisms are plausible explanations of particle acceleration and long-duration
𝛾-emission and extended radio source, the latter produced by the rising CME at different coronal
altitudes and can be regarded as an evolution of the scenario proposed by Mandzhavidze–Ramaty
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Figure 2: Hybrid mechanism:flare-CME-particle trapping-reacceleration of SEP energetization.

[14] and supported by morphological studies [15, 16] and recent observations/models [13, 17] .

3. Registration and analysis of GLEs using NM records

When a primary CR enters in the atmosphere it induces an extensive air shower, that is the
primary interacts with an atmospheric constituent and produces a large variety of secondaries,
accordingly, the secondaries also collide with atmospheric constituents, in turn producing other,
i.e., the next generation of particles. Each collision adds a certain amount of particles, leading to
the development of a complicated nuclear-electromagnetic-meson cascade known as an extensive
air shower (EAS). A specifically designed detector, that is NM can register mostly the hadron
component of the EAS Fig. 3a, where the minimum energy necessary to give a signal in the station
is about 300 MeV/n for the polar high-altitude NMs and 430 MeV/n for low rigidity cut-off stations
at sea level respectively [18].

It was shown that GLEs can be studied with ground-based instruments, namely NMs [19, 20].
Stations at different geographic regions are sensitive to a different part of the SEP spectra and
arrival direction [21]. Since GLEs occur sporadically and naturally differ from each other in
spectra, particle flux, anisotropy, duration, and time evolution, they are studied on a case-by-case
basis [22].

For reliable analysis of NM records, it is necessary to possess enough NM stations [20]. The
methods for analysis of GLEs using NM data are based on modeling the global NM network
response and unfolding 𝑛 model parameters over the experimental records of 𝑚 NMs [23, 24].

The response of each NM is computed by integral of the product of the primary CR spectrum
𝐽 (𝑃, 𝑡) with the specific NM yield function 𝑆(𝑃, ℎ), that is the count rate of an NM at a given
altitude ℎ and time 𝑡 is expressed as:

𝑁 (𝑃𝑐, ℎ, 𝑡) =
∑︁
𝑖

∫ ∞

𝑃𝑐

𝑆𝑖 (𝑃, ℎ) 𝐽𝑖 (𝑃, 𝑡) 𝑑𝑃 (1)
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(a) Sketch of extensive air shower induced by primary CR
proton and the registration of mostly hadron secondaries by a
NM.

(b) Segments of the sky over the response of an NM station
is integrated during the modeling-unfolding procedure.

Figure 3: Registration and analysis of CRs with NMs.

where 𝑃𝑐 is the local geomagnetic rigidity cut-off, ℎ is the atmospheric depth (or altitude), 𝑆𝑖 (𝑃, ℎ)
[m2 sr] is the NM yield function for primaries of particle type 𝑖 (protons and/or 𝛼-particles), 𝐽𝑖 (𝑃, 𝑡)
[GV m2 sr sec]−1 is the rigidity spectrum of the primary particle of type 𝑖 at time 𝑡 [25]. We
emphasize that the modeling should reproduce the stations with maximal and significant count rate
increases as well as with marginal or null count rate increases [23].

Here we employed a method based on validated by direct space-born measurements new
generation NM yield function, [26, 27] and robust flexible optimization, that is with variable
regularization and damper of the process, including local root extractor [28–30] within Levenberg-
Marquardt method [31, 32]. We would like to emphasize that the new generation of NM yield
function is in excellent agreement with experimental records and models [33, 34] and it is the best
situated for GLE analysis [35]. The method was recently verified by direct space-born measurements
and was used for the analysis of a plethora of GLEs [36–40].

Here, the relative count rate increase of a given NM during GLE is modeled using:

Δ𝑁 (𝑃cut)
𝑁 (𝑡) =

∑
𝑖

∑
𝑘

∫ 𝑃max
𝑃cut

𝐽sepi (𝑃, 𝑡)𝑆𝑖,𝑘 (𝑃)𝐺𝑖 (𝛼(𝑃, 𝑡))𝐴𝑖 (𝑃)𝑑𝑃∑
𝑖

∫ ∞
𝑃cut

𝐽GCRi (𝑃, 𝑡)𝑆𝑖 (𝑃)𝑑𝑃
(2)

where 𝑁 (𝑡) is the count rate due to GCR, Δ𝑁 (𝑃cut) is the count rate increase due to solar particles.
𝐽sep is the rigidity spectrum of SEPs 𝑖 (proton or 𝛼-particle), 𝐽GCRi (𝑃, 𝑡) is the rigidity spectrum
of the 𝑖 component (proton or 𝛼-particle, etc...) of GCR at given time 𝑡, 𝐺 (𝛼(𝑃, 𝑡)) is the pitch
angle distribution (PAD), note for GCRs the angular distribution is assumed to be isotropic, A(P)
is a discrete function with 𝐴(𝑃)=1 for allowed trajectories and 𝐴(𝑃)=0 for forbidden trajectories.
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Function 𝐴 is derived during the asymptotic cone computations. 𝑃cut is the minimum rigidity
cut-off of the station, accordingly, 𝑃cut is the maximum rigidity of SEPs considered in the model,
whilst for GCR 𝑃max= ∞. 𝑆𝑘 is the NM yield function for vertical and for oblique incidence SEPs
from various segments Fig. 3b, where 1 corresponds to vertical incidence, 2–5 for SEPs inclined
of 15 degrees and azimuth angles with steps of 90 degrees, segments 6–9 and 10–13 correspond
to an inclination of 30 and 45 degrees with the same azimuthal incidence as the above-mentioned
segments, respectively. The contribution of oblique SEPs to NM response is particularly important
for modeling strong and/or very anisotropic events [41], while for weak and/or moderately strong
events it is possible to consider only vertical ones and using 𝑆𝑘 for an isotropic case, which
considerably simplifies the computations [42].

In Equation 2 the GCR spectrum is parameterized employing the force-field model [43] using an
approximation of the local interstellar spectrum by [44], accordingly the solar modulation parameter
is computed similarly to [45].

The method involves the following consecutive steps: computation of asymptotic viewing
directions and rigidity cut-off of all NMs used for the data analysis; making an initial guess of the
optimization procedure [42] similarly to [46] and performing the optimization itself, that is using
modeled and recorded NM responses over a selected space of unknown parameters to determine
the spectra, PAD and apparent source position of the source.

Here, the magnetospheric computations that is the rigidity cut-off and asymptotic directions
of each NM station used in the analysis, were performed using an open source tool OTSO [47]
employing a combination of the IGRF geomagnetic model as the internal field model e.g. [48]
and the e.g. Tsyganenko 89 model as the external field [49], explicitly considering the measured
K𝑝 index prior and during the event. This combination of models provides reasonable precision
and straightforward computation of the rigidity cut-offs and asymptotic directions necessary for the
NM data analysis [50, 51]. Note, that use of later Tsyganenko models should be considered during
periods of intense geomagnetic activity (e.g. periods of Kp index above 6), since the TSY 89 is not
recommended to be employed in such cases.

We emphasize that the employed inverse problem solution method is somehow interpolation
between the Gauss–Newton and the method of gradient descent, but benefiting because the floating
damper and flexible regularization to obtain reliable solutions even if it starts far from the final
minimum [28, 52]. In addition, because the derived spectra and mainly PADs are sensitive to
apparent source assessment [53], we routinely compute and build the distribution of the sum of
variances for the best-fit solutions vs. geographic coordinates, obtained by forward modeling over
all the possible apparent source positions, that is we are performing verification of the derived SEP
characteristics [54].

A notable example of the application of the described method is the analysis of GLE # 71,
occurred on 17 May 2012. It followed active processes in the active region NOAA 11476, namely
a CME and a moderately strong flare (class M5.1). At Earth, the worldwide NM network recorded
a weak enhancement, and greater signals were recorded by APTY, OULU, and SOPO/SOPB NMs.
The majority of the NMs exhibited marginal count rate increases, therefore a large anisotropy of the
arriving SEPs, specifically during the event onset, was implied. This event was extensively studied
[10, 15, 25, 55]. An example of several derived spectra and PADs is shown in Fig. 4.

The best fit is obtained using a modified power-law rigidity spectrum:
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Figure 4: Top panels: derived SEP rigidity spectra (left panel) and PADs (right panel) during selected
periods of GLE # 71. Bottom panels: event averaged SEP spectra (left) and PAD (right) during GLE # 71.

𝐽 | | (𝑃) = 𝐽0𝑃
−(𝛾+𝛿𝛾 (𝑃−1) ) (3)

where 𝐽 | | (𝑃) is the particle flux with given rigidity 𝑃 in [GV] arriving from the Sun along the
axis of symmetry, which is defined by the geographic coordinate angles Ψ and Λ (latitude and
longitude). In Eq. 3, 𝛾 is the power-law spectral exponent at rigidity P = 1 GV, accordingly 𝛿𝛾 is
the rate of the spectrum steepening. The angular distribution of the arriving SEPs is depicted by
complicated pitch angle distribution (PAD) Eq. 4 with a shape similar to that considered by [23],
namely superposition of two Gaussians:

𝐺 (𝛼(𝑃)) ∼ 𝑒𝑥𝑝(−𝛼2/𝜎2
1 ) + 𝐵 ∗ 𝑒𝑥𝑝(−(𝛼 − 𝛼

′)2/𝜎2
2 ) (4)

where 𝛼 is the pitch angle, 𝜎1 and 𝜎2 are parameters corresponding to the width of the pitch angle
distribution, 𝐵 and 𝛼

′ are parameters corresponding to the contribution of the second Gaussian,
including direction nearly opposite to the derived axis of symmetry. Note, at and below P=1 GV,
the Eq. 3 is slightly modified in order to avoid discontinuity. In general, here we distinguish
three phases of the event: initial (01:50–02:25 UT) with a relatively hard spectrum and constant
increase of SEP flux accompanied by complicated PAD; main phase (02:25–03:05 UT), with a
steady softening of the SEP spectra and decrease of the SEP with corresponding decrease of the
steepening 𝛿𝛾, and late phase of the event (after 03:05 UT), characterized with a pure power-law
spectrum and nearly isotropic PAD. Here we emphasize that the initial and main phases of the event
correspond to the PC, while the late phase to the DC. The transition of the main to the late phase
of the event can be attributed somehow to trapping-reacceleration of part of the firstly accelerated
protons as discussed in Section 2.
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In addition, a very good agreement of the derived fluence and PAD during GLE # 71 with the
direct measurements by PAMELA space-probe was achieved, including the complicated angular
distribution [55, 56] . Besides, good agreement with SOHO/EPHIN measurements in the energy
range 300-700 MeV/nucleon fitted with pure power-law was achieved [57]. Therefore, the employed
method for analysis of NM data is somehow verified by direct measurements.

 PAMELA

F(
>R

) [
cm

-2
]

R [GV]

 NM 

Figure 5: Integral SEP fluence during GLE 71 on May 17, 2012 computed using NM and PAMELA data
reconstructions as denoted in the legend. The blue-filled and hatched area corresponds to the PAMELA data
up to 2 GV and the corresponding data extrapolation above 2 GV respectively.

4. Space weather and terrestrial effects during relativistic solar particle events

During GLEs the increased intensity of CRs result in important space weather issues, specif-
ically at flight altitudes [58], specifically on polar intercontinental flights, where the geomagnetic
shielding is marginal. Over the last two decades following the progress of hadron interaction
models and the corresponding Monte Carlo simulation tools, several models aiming at assessment
of the absorbed dose (ambient dose equivalent, effective dose, ambient dose) at flight altitudes,
henceforth exposure to radiation or simply exposure have been developed [59–61], which nicely
agree with each-other within about 10–20 % [62]. Though, an important uncertainty, up to an order
of magnitude, in the computation of the exposure during GLEs was reported [53, 63] mostly due to
the considered SEP spectra, i.e., input for the models.

A convenient numerical model for computation of the exposure is based on pre-computed yield
functions [64, 65]. In the model, the effective dose rate at a given atmospheric altitude (depth) ℎ
induced by a primary CR particle is computed by integral of the product of the CR particle spectrum
with the corresponding yield function:

𝐸 (ℎ, 𝑇, 𝜃, 𝜑) =
∑︁
𝑖

∫ ∞

𝑇 (𝑃𝑐𝑢𝑡 )

∫
Ω

𝐽𝑖 (𝑇)𝑌𝑖 (𝑇, ℎ)𝑑Ω(𝜃, 𝜑)𝑑𝑇, (5)
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where 𝐽𝑖 (𝑇) is the differential energy spectrum of the primary CR arriving at the top of the
atmosphere for the 𝑖−th component of CRs (proton or 𝛼−particle) and 𝑌𝑖 is the corresponding
effective dose yield function. The integration is over the kinetic energy 𝑇 above 𝑇 (𝑃𝑐𝑢𝑡 ), which is
defined by the local cut-off rigidity 𝑃𝑐𝑢𝑡 and over the sold angle Ω.

The effective dose yield function 𝑌𝑖 is defined as:

𝑌𝑖 (𝑇, ℎ) =
∑︁
𝑗

∫
𝑇∗

𝐹𝑖, 𝑗 (ℎ, 𝑇, 𝑇∗, 𝜃, 𝜑)𝐶 𝑗 (𝑇∗)𝑑𝑇∗ (6)

where 𝐶 𝑗 (𝑇∗) is the fluence to effective dose conversion coefficient for a secondary particle of type
𝑗 (neutron, proton, 𝛾, 𝑒−, 𝑒+, 𝜇−, 𝜇+, 𝜋−, 𝜋+) with energy 𝑇∗, 𝐹𝑖, 𝑗 (ℎ, 𝑇, 𝑇∗, 𝜃, 𝜑) is the fluence of
secondary particles of type 𝑗 , produced by a primary CR particle of type 𝑖 (proton or 𝛼−particle)
with a given primary energy𝑇 arriving at the top of the atmosphere from zenith angle 𝜃 and azimuth
angle 𝜑.

In the model, the conversion coefficients 𝐶 𝑗 (𝑇∗) are considered according to [66, 67]. We
emphasize that employment of different conversion coefficients 𝐶 𝑗 (𝑇∗) would lead to an increase
of the assessed exposure of about 20 %, which is considerably below the other model uncertainties
[68, 69]. The model is in very good agreement with measurements, including stratospheric balloon-
borne, reference data, as well as widely used models [65, 70–72].

An illustration of the application of the model within the full-chain analysis of NM data, namely
deriving the SEP spectra-assessment of space weather effect, that is exposure at flight altitude during
GLE is given in Fig.6a. Here, using the derived spectra during the peak intensity of SEPs of GLE
#71, we computed the effective dose rate at L035, that is 35 kft. We would like to emphasize that
the exposure during GLEs can reach peak values for a relatively short period, mostly corresponding
to the peak SEP flux.
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Figure 6: Illustration of space weather and terrestrial effects during GLEs.

Despite the derived anisotropy, we conservatively assumed an isotropic angular distribution of
the GLE particles similarly to [73, 74], considering also the event integrated angular distribution
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Fig.4. As expected, the exposure is maximal in the polar region and significantly diminished at
greater rigidity cut-off regions.

Similarly, employing a Monte Carlo based atmospheric ionization model [75] and the derived
spectra during the GLE # 73 [39], the ion production rate at the region of Regener-Pfotzer maximum
[76] can be computed, the details are given in Fig. 6b. We would like to emphasize that the ionization
effects due to various populations of precipitating particles varies considerably from event to event
[77, 78] and depends also on accompanying Forbush decreases, the latter could compensate the
excess of ions produced by SEPs [79, 80].

5. Conclusions

Methodological observations and study of relativistic SEPs by various ground-based and
space-borne instruments gives an unique opportunity to reveal their mechanism for accelerations,
specifically in the tail of the spectrum, that is the high-energy range. The long-lasting paradigm of
SEP acceleration by flare/CME for impulsive, gradual events respectively, was recently expanded
by including hybrid and prolonged reconnection as discussed in this paper. The future development
of the knowledge in the field and the open questions to be answered are related to clarifying the role
of the ambient turbulence/waves and self-generated ones in the trapping and escape of SEPs during
acceleration and transport in the corona and near the Sun. A specific interest shall be paid on how
the coronal and interplanetary magnetic field affect the energization and escape of SEPs from their
acceleration regions, which can be the key factor to the observed large event-to-event variations.
Non the least what is the exact mechanism for triggering the SEP acceleration as well as the relative
contribution of the different mechanisms should be answered. The ongoing space missions such as
Parker Solar Probe and Solar Orbiter as well as the planned ones and the sustainable operation of
the global NM network can provide the necessary observational material.

Finally, the precise quantification of the relativistic SEPs induced terrestrial effects is specifi-
cally important in order to provide reliable space weather service(s) and study the impact of energetic
precipitating particles on atmospheric chemistry and physics.

Here, we reported and discussed several recent achievements of the aforementioned topics,
specifically the physics and the related effects of relativistic SEPs/GLEs as well as the author’s
personal opinion of the future development of the field.
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