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We present the first steps of a search for high-energy (> 1 PeV) gamma rays in archival data of the
KASCADE experiment. With the data collected from 1996 to 2013 the KASCADE statistics is
comparable with that of modern observatories. The data is provided by the KASCADE Cosmic
ray Data Center (KCDC) and publicly available. We employ methods of machine learning
to distinguish between air showers produced by hadronic and gamma-ray primaries. For that
we design primary particle type classifiers and train them with the KASCADE Monte-Carlo
simulations. We compare results of several deep learning methods: a graph neural network, a
self-attention network and a compact convolutional transformer. The level of hadronic background
suppression with respect to gamma-ray signal in the best of these methods exceeds that of the
original KASCADE method by more than an order of magnitude.
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1. Introduction

Since the middle of the last century, one of the key issues in the physics of high energy cosmic
rays was the question of presence or absence of gamma rays with energies above 100 TeV. This
is very important test for theoretical models of acceleration and diffusion of galactic cosmic rays.
Until recently, only the upper limits for the flux of gamma rays of these energies were set by several
experiments [1–3]. The reason for this was the lack of sufficient sensitivity of the arrays and the
methods of analysis used. In 2019 gamma rays with energies higher than 100 TeV were registered
for a first time from the Crab Nebula by Tibet-AS𝛾 [4] and HAWC [5]. It was followed by the
observation of diffuse gamma rays with energies higher than 100 TeV by the Tibet-AS𝛾 [6] and up
to 1.4 PeV by LHAASO [7]. These observatories, that are situated at an altitude of more than 4
km above sea level and supplied with underground muon detectors, have extremely high sensitivity
to distinguish between hadronic and gamma-ray air showers. On the other hand, it is possible to
increase the respective sensitivity using modern methods of data analysis — methods based on the
latest achievements in machine learning. Applying these techniques to cosmic ray data has already
given good results in experiments such as IceCube [8], Pierre Auger [9], and Telescope Array [10].
Therefore, it is interesting to apply these methods to the archival data of similar experiments,
which were processed by standard methods during their operation. One of these experiments with
extensively documented and publicly available data and Monte-Carlo simulations is the KASCADE
experiment, which collected and analyzed data from 1996 to 2013.

The KASCADE data are extensive air showers recorded by a ground-based array of scintillators
and underground muon detectors, with energies ranging from ∼ 300 TeV to ∼ 100 PeV. In this study
we use the data and Monte-Carlo provided by KCDC service [11]. The total exposure of the
KASCADE experiment, accumulated over 15 years of measurements is approximately half of the
exposure of LHAASO used to discover gamma rays with energies up to 1.4 PeV from galactic
sources [7]. Thus, we can argue that the KASCADE data surely contains the events induced by the
primary gamma rays. The final goal of our studies is to separate these events from the hadronic
background. This implies that the survival rate of hadronic background with respect to gamma-ray
signal for our machine learning techniques should be comparable to that of modern experiments:
10−5 — 10−6. In this study we use several machine learning architectures: a graph neural network,
a self-attention network and a compact convolutional transformer. We are reporting the recent status
of these methods development and calibration with KASCADE Monte-Carlo simulations.

The text is organised as follows: in section 2 we outline the data and Monte-Carlo sets we use,
in section 3 we briefly describe the machine learning methods we develop for the data analysis,
in section 4 we show the performance of our methods on KCDC Monte-Carlo simulations, we
conclude in section 5.

2. Data

In this research we use the KASCADE preselection data sets and Monte-Carlo simulations
provided by the KCDC service [11]. This data includes information about the detected cosmic air
showers events. The full archive consists of∼ 300 M air shower events in energy range∼ 1−100 PeV,
detected by a 16x16 array of scintillating detectors during experiment operation from 1996 to 2013.
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Figure 1: Example of the experimental event in the dataset. The matrices of arrival times, 𝑒/𝛾 and 𝜇 deposits
are shown. Reconstructed features of the event: log10 𝐸 , [eV] = 15.54, 𝜃 = 19.81◦. Note, KASCADE does
not have detector stations in the central part 2x2 for arrival times and 𝑒/𝛾 deposits and 8x8 for 𝜇 deposits,
due to that we represent these areas as unresponsive.

Each event consists of energy deposits from 𝑒/𝛾 and 𝜇 detectors and shower arrival times, and a set
of reconstructed features. These features are: shower energy (𝐸), shower core coordinates (𝑥 and 𝑦),
zenith (𝜃) and azimuthal (𝜙) angles of the primary particle, muon (log10 𝑁𝜇) and electron (log10 𝑁𝑒)
numbers and shower age (𝑠).

The example of the experimental event is depicted in the FIG. 1. Arrival times and deposits in
𝑒/𝛾 and 𝜇 detectors are represented as images of 16x16 shape. KASCADE does not have detectors
in the central part (2x2 for 𝑒/𝛾, 8x8 for 𝜇) and due to this we mark these areas as unresponsive.

For Monte-Carlo we use the CORSIKA [12] simulations provided by KCDC service. These
simulations (MC) have the same properties as in real data, reconstructed using the actual detector
response. Namely, we simulate events for gamma-ray and proton primaries using QGSJet-II.04 [13],
EPOS-LHC [14] and Sybill 2.3c [15] hadronic interaction models. The primary energy spectrum is
set to ∼ 𝐸−2. The number of simulated events for gamma rays and protons are ∼ 6 · 104 and ∼ 106

respectively for QGSJet-II.04 hadronic interaction model and ∼ 3 · 104 and ∼ 6 · 105 respectively
for others models.

According to the KASCADE photon search study [2] we use the following quality cuts:
𝑥2 + 𝑦2 < 91 m, log10 𝑁𝑒 > 4. We relaxed the zenith angle cut from 𝜃 < 20◦ that was used in the
original KASCADE study to 𝜃 < 40◦. We threat the ranges 𝜃 < 20◦ and 20◦ < 𝜃 < 40◦ separately
to test the reliability of the large zenith angle region.

We also use the real data set, we have divided it into “blind” and “unblind” parts in 80%:20%
ratio. The unblind part is used in the process of the analysis. The blind part is set aside and will
be used only to produce the physical results, when the research methodology will be tested and
fixed. This way allows us to get rid of unconsciously changing the methodology in the process of
the research to get a better result, but at the same time allows us to compare different distributions
to make sure the methodology is correct. Therefore, in this paper all the figures mentioning
experimental data represent its unblind part only.

3. Machine learning methods

We apply machine learning methods to separate KASCADE events produced by primary
gamma rays and primary hadrons. We design, train and check out performance of the Self-
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MLP CCT GCN

Input
𝑒/𝛾 + 𝜇 deposits,
flatten to 1x512

𝑒/𝛾 + 𝜇 deposits,
as an image 2x16x16

a graph: 𝑒/𝛾 + 𝜇 deposits
as nodes;

edges between stations
+ reconstructed features

Peculiarities Attention
2D Convolutions,
Attention, Pooling Graph Convolutions

Spatial invariance Non-invariant Partially invariant Non-invariant
Number of parameters 30 183 30 531 29 520

Table 1: The comparison of the neural net architectures used.

attention Multi Layer Perceptron (MLP), Compact Convolutional Transformer (CCT) and Graph
Convolutional Network (GCN). These networks are considered as event-by-event classifiers in the
research. The brief comparison of the models is shown in a Table 1.

All the neural networks are trained with proton and gamma Monte-Carlo sets. The gamma
set is compiled of all hadronic models sets, while for proton we use QGSJet-II.04 set only. We
devide each of these sets into train, validation and test subsets. We use train and validation sets
for training models. In particular, validation set is used for early stopping to avoid overfitting
and hyperparameter tuning of neural nets. All the metrics are evaluated on test subsets of the
corresponding Monte-Carlo sets.

3.1 Self-attention Multi Layer Perceptron

The key feature of this model is the self-attention layers [16]. They are based on Vision
Transformers [17], that are competitive to state-of-art convolutional networks in image classification
tasks. The inputs for the MLP are energy deposits from 𝑒/𝛾 and 𝜇 detector station represented
as flatten 1D array. This classifier is implemented in TensorFlow [18] and has ∼ 30 000 trainable
parameters.

3.2 Compact Convolutional Transformer

The second model we use is CCT [19]. This network architecture combines the convolutions
and the standard vision transformer. Typically, this architecture has smaller number of trainable
parameters than other transformers (while achieving similar performance), therefore it can be trained
more easily. The input of the CCT are energy deposits from 𝑒/𝛾 and 𝜇 detector stations represented
as 2 channel (one for 𝑒/𝛾 and one for 𝜇) 16x16 image. In this research we implemented CCT using
PyTorch [20]. The model has ∼ 31 000 trainable parameters.

3.3 Graph Convolutional Network

The last model we test is GCN. The key feature of this network is the graph convolutions [21].
This architecture is successfully used for cosmic rays classification in LHAASO [22]. The inputs
of the model are the graph whose nodes are 𝑒/𝛾 and 𝜇 deposits, while edges represent the distances
between neighboring detector stations. This classifier is implemented with PyTorch Geometric [23]
library. The model has ∼ 30 000 trainable parameters.
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4. Results

After the implementation of the models we evaluate their performance. We train the models
on the mix of gamma-ray and proton Monte-Carlo. The latter is considered as a background for our
classification task. We use protons as a background because they are the lightest nuclei and their air
showers are the most similar to that of gamma rays, among other nuclei. The characteristic value
we use for testing the neural nets performance is a gamma ray candidate survival rate (survival
fraction) that is a ratio of a number of events classified as gammas in a given event set to a total
number of events in the set. For an accurate classifier the survival rate should be high for gamma
MC events and low for proton MC events. We compare the survival rates for gammas and protons
for different primary energies and zenith angles. Additionally, we plot the rates for the experimental
data to check the credibility of the classifier. For reliable classifiers we expect the data survival
rates to be compatible with the proton rates.

The results are shown in Fig. 2. In this figure, “gamma MC” means the survival rate for gamma
primaries, “proton MC” — for protons and “candidates” — for the unblind experimental data. At
some energies only the upper limits stands for protons, this corresponds to a situation when zero
proton events were classified as gammas in the particular energy bin. In this case the upper limits
are inferred as 68% binomial confidence intervals for a given total number of events and given
number of candidates. It is clear that the real survival fractions for protons are lower for these bins,
while the present situation reflects only the fact that we do not have enough proton MC events at the
given energies. The much lower survival rates obtained for the (almost totally hadronic) data also
supports this interpretation and points to a possible true survival rates of the background events for
a given classification method.

Comparing the results of the different classifiers one can see that in the observationally most
interesting region (0.3 — 10 PeV) MLP and GCN have a survival rate for the data at the level
10−6 — 3 · 10−5, that is comparable to the modern gamma observatories [6, 7] and more than order
of magnitude stronger than the survival rate achieved in the original KASCADE analysis [2]. Also,
one should note that the MLP method have an advantage of almost 100% survival rate for a gamma
signal at all energies. The second thing we can infer from these plots is that at least for the MLP
method the survival rates for the background and the signal do not depend much on the zenith
angle (in fact for larger zenith angles the suppression of the background is even stronger). Both of
these findings can help us to achieve the sensitivity enough to decipher the gamma signal from the
KASCADE data. Although the additional proton MC is needed to verify the performance of the
classifiers.

5. Conclusion

We have shown the first steps of the search for ultra-high-energy gamma rays based on archival
data of the KASCADE experiment, provided by the KASCADE Cosmic ray Data Center (KCDC).
We implemented and tested three different machine learning architectures: MLP, CCT and GCN
for the event-by-event classification of the gamma-ray signal on top of the proton background. We
also estimated the performance of these models with an unblind part of experimental data and
found a reasonable agreement between data and MC in this aspect. The gamma-hadron separation
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(a) (b) (c)

Figure 2: The dependence of the survival rate on the energy of the primary particle for (a) MLP, (b) CCT,
(c) GCN. The upper panel shows the zenith angle range from 0 to 20 degrees, the lower panel — from 20 to
40 degrees.

power of our methods was found to be more than order of magnitude stronger than that of the
original KASCADE gamma-ray search method. However, we need at least 10 times more hadronic
Monte-Carlo events to make more thorough test of our classifiers.
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