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The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is
designed to investigate cosmic-ray induced air showers using radio measurements. The ultimate
goal of AERA is to recover the three-dimensional electromagnetic field originating from the air
shower with the measured voltage time traces of the antennas, which is a challenging task. The
electric field measurements are modified in the detection process by the frequency- and direction-
dependent antenna response, and is superimposed by noise. We use conditional Invertible Neural
Networks (cINNs) to learn posterior distributions, from which the most likely electromagnetic field
given a measured voltage time trace can be inferred. We extend the method with an autoencoder to
further enhance robustness, reduce the parameter space, and decouple the cINN from data shape.
We will present an overview of the method and its application to simplified simulation data with
typical properties of AERA and evaluate the methods reconstruction quality.
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Figure 1: Schema of a normalizing flow. The forward direction maps a complicated function onto a simple
function while the backward direction is used to generate or reconstruct samples of the complex distribution.

1. Introduction

Upon entering the atmosphere, ultra-high energy cosmic rays (UHECRs) induce extensive air
showers by interacting with air molecules. Charged particles in the air showers emit radio waves
by two well-established mechanisms, the geomagnetic emission and the Askaryan effect. At the
Pierre Auger Observatory [1] radio emission is detected by the Auger Engineering Radio Array
(AERA) [2]. The aim of this work is to infer the electric field originating from the air showers
using the voltage traces of the antennas. It was developed and analyzed with simplified simulated
data using parameters typical of AERA.

The antennas used at AERA have two polarization directions, primarily to detect the horizontal
components of the electric field. The third, mostly vertical component is not directly measured.
Furthermore, the antenna acts like a filter, with a frequency- and direction-dependent complex
gain. Finally, noise contaminates the measurements. For reconstructing the all components of the
three-dimensional electric field, information on the arrival direction of the shower was previously
needed which required at least three antenna stations to measure the radio pulse [3].

In this work, we present a method to unfold the three-dimensional electric field from the antenna
voltage trace, i.e. remove detector and noise effects, using a single station only.

2. Conditional Invertible Neural Networks

The method presented here uses conditional invertible neural networks (cINNs) which belong to
the network class of normalizing flows [4]. They conserve probability when mapping a complicated
distribution onto simpler ones while being invertible. Using the inverse direction, samples from the
original distribution can be drawn by sampling the simple distribution instead. This way, cINNs
can be used for reconstruction. The process is illustrated in Fig. 1.

Conditional invertible neural networks are constructed to be bĳective. In particular, they
consist of several so-called affine coupling blocks [7] in a row. An exemplary block is illustrated in
Fig. 2. The affine coupling block is a mathematical expression that takes functions (here 𝑠𝑖 and 𝑡𝑖)
and is invertible without the need of the embedded functions to be invertible. Neural networks are
used for these functions.

The coupling block maps a vector x via

v1 = x1 ⊙ exp(𝑠1 (x2)) + 𝑡1 (u2) ,
v2 = x2 ⊙ exp(𝑠2 (x1)) + 𝑡2 (v1) ,

(1)
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where ⊙ stands for element-wise multiplication. The inverse direction is given by

u2 = (v2 − 𝑡2 (v1)) ⊘ exp(𝑠2 (v1)) ,
u1 = (v1 − 𝑡1 (u2)) ⊘ exp(𝑠1 (u2)) ,

(2)

where ⊘ stands for element-wise division.
The embedded functions are conditioned and take the condition 𝑐. The cINN will map the

complex distribution onto the simple distribution under that condition. This condition is used when
sampling the complex distribution via the inverse direction as well, producing conditioned samples.

x1

x2

z1

z2

x Z

Figure 2: Conditional coupling block with RNVP architecture, forward direction. Adapted from [7].

3. Network Architecture

The network used here consists of two parts: An autoencoder [8] is used for dimensionality
reduction, compressing each time-dependent voltage trace into a short list of uncorrelated numbers.
The second part is a cINN, which can map between the encoded electric field and the encoded
voltage measurements. Pytorch [5] and FrEIA [6] were used as frameworks.

An autoencoder contains two parts, the encoder and the decoder. The encoder consists of 5
layers of convolutions, iteratively reducing the 128-time bins of the input to 15 numbers, thereby
mapping the input into a lower-dimensional space. The decoder consists of 5 layers of transpose
convolutions, mapping the 15 numbers of the lower dimensional representation back into a full time
trace. Another encoder is used as a pre-processing network for the condition input of the cINN.
This pre-processing network is initialized with the weights of the autoencoder’s encoder.

The cINN is a chain of 8 RNVP type [9] coupling blocks. Inside these blocks, fully connected
networks are trained. Fig. 3 presents the combined architecture. The cINN network produces three
compressed electric field traces, one for each direction, by sampling from the Gaussian distributions
and by using the encoded voltage traces of the two antenna polarizations as condition. The
autoencoder decompresses these to three full time traces. Thus, for a given antenna measurement,
the combined architecture infers the most likely three-dimensional electric field vector as a function
of time. This can be repeated multiple times with different Gaussian samples.

4. Reconstruction Quality

The method presented here produces a full three-dimensional electric field for a given two-
dimensional voltage trace. The voltage trace is contaminated with noise and affected by the antenna

3



P
o
S
(
A
R
E
N
A
2
0
2
2
)
0
4
0

Unfolding the Electromagnetic Field from Voltage Time Traces using a Neural Network Approach
Maximilian Straub

(3,15) 

decoder

cINN

encoder

encoder

forward

backward

Condition c (2,128)
Measured Voltage

(2,15) 

Input x (3, 128) 
E-Field

Reconstruction x’ (3, 128)
E-Field

Latent S
pace z (45)

Figure 3: Model architecture. An encoder is used to compress time traces to a lower dimensional represen-
tation. The cINN learns the unfolding on this compressed data. To do the unfolding, the cINN produces a
compressed electric field trace, which is expanded by the autoencoder’s decoder into a full trace.

characteristics. The reconstruction presented here removes noise, corrects for detector effects, and
gives an estimate for the third dimension that is not explicitly measured. Fig. 4 shows an exemplary
reconstruction. Reconstructing the same trace multiple times with different Gaussian samples was
used to estimate bin-by-bin uncertainties on the reconstructed electric field traces. These errors
were found to be overestimated with respect to Gaussian errors per bin. In general, the electric field
reconstruction worked well for sufficiently large signals above noise. We observed, that removing
small signals from the training data improved the overall reconstruction quality. The reconstructions
deviate on average less than 10% in the magnitude of the signal from the true signal. Correlations
between reconstruction and truth were convincing for most traces, indicating that the shape of the
signal was recovered well.

5. Summary

Extensive air showers produce radio signals that contain information about the shower de-
velopment. When measuring this radio emission with antennas, the signals are modified by the
antenna characteristics, superimposed by noise. Furthermore, only two of the three electric field
components are measured directly by the two antenna polarizations. This work presents a method
for the unfolding from the measured voltage traces to the corresponding electric field originating
from radio emission from extensive air showers. The method uses an autoencoder for dimensional-
ity reduction and a conditional invertible neural network for to produce the time-dependent electric
field vector. The cINN operates on the lower-dimensional representation found by the autoencoder.
The method successfully removed noise and other detector effects and produced an estimate for the
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Figure 4: Exemplary reconstruction. The plot shows the two dimensional noise-contaminated voltage and
the three-dimensional electric field and cINN reconstruction. The grey bands indicate error estimates by the
network.

lost vertical direction of the signal. The performance was generally good, while signals with a small
amplitude were unable to be reconstructed. Using an autoencoder for dimensionality reduction
makes the cINN architecture independent of data shape, this way the method can be easily applied
to other unfolding problems.
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