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The process of galactic disc growing is still not fully understood. In the majority of disk galaxies
the gas and stars are located in the same plane and rotate in the same direction. However, there are
kinematically peculiar galaxies hosting two counter-rotating stellar discs. Their origin is believed
to be the result of a past event of accretion of gas followed by star formation. By studying
such galaxies we can learn how much material, when, and how, have fallen onto the progenitor
galaxy. We identified a sample of 56 counter-rotating galaxies in the MaNGA IFU survey and
initiated a follow-up observing campaign at the 6-m telescope (BTA) aiming to determine the
stellar population properties of both stellar discs. Our preliminary results suggest the dichotomy
of the sample of counter-rotating galaxies. We found that most massive galaxies have extended
counter-rotating disks, whose contribution to luminosity is higher than in the less massive galaxies
suggestive of different evolutionary paths.
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1. Introduction

In normal disk galaxies, gas and stars rotate in the same plane and in the same direction.
However, there are galaxies with misaligned rotation of gas and stars and even with two stellar
disks rotating in opposite directions [1]. The dominant evolutionary scenario for the formation of
such galaxies with kinematic misalignment or counter-rotation (CR) is the accretion of external gas
with different (or opposite) direction of angular momentum. Both cosmological filaments or galaxy
mergers can be a source of material forming kinematically decoupled components. The parameters
of such components and comparison with the host galaxy body allow us to learn when and how
galaxies can acquire external material and form their disks.

Recent spectroscopic surveys have shown that multi-spin galaxies are more common in the
galaxy population than they appeared to be 30 years ago, when they were first discovered. For
example, out of 260 early type galaxies (ETGs) from the ATLAS3D spectral panoramic survey [2],
30% have been found to have a positional angle of gas rotation that differs by more than 30◦ from
the stellar. As shown in [3], about 11% of the 1213 galaxies in the Australian SAMI spectral
survey [4] have gas-stellar misalignment. Also, 66 galaxies with this misalignment have been
found, recorded, and studied by [5] based on the MaNGA SDSS survey data. In addition to the
gas-stellar misalignment, stellar counter-rotation is now frequently found in the MaNGA SDSS
survey. In [6, 7] a sample of galaxies with counter-rotation from the DR16 data release is reported.

Some galaxies with kinematically misaligned gas and stellar disks are the most interesting
multi-spin objects. They contain two extended stellar disks rotating in opposite directions (counter-
rotation, CR), located in the main plane of the galaxy. The presence of stellar counter-rotation
leads to a two-peak structure in the stellar velocity dispersion map [8], which can be used to search
for this galaxies. Stellar CR is more common in ETGs than in the late-type [9]. An important
aspect is that morphologically or photometrically such galaxies are indistinguishable from regularly
rotating galaxies, and spectroscopy is needed to detect this effect. Only about a ten galaxies have
been studied in detail based on deep spectroscopic observations [10, 11], which were studied by the
spectral decomposition methods [12]. The application of spectral decomposition requires spectra
with a high signal-to-noise ratio (S/N) and good enough spectral resolution to decompose the
spectrum into two independent components with individual stellar population properties (age and
metallicity) and kinematics (velocity and velocity dispersion).

In this paper, we report on the progress of the study of a sample of counter-rotating galaxies
which we identified in the MaNGA survey.

2. Sample of counter-rotating galaxies

2.1 MaNGA survey

In order to increase the number of galaxies with stellar counter-rotating disks, we used the
largest spectroscopic survey to date, the Mapping Nearby Galaxy at Apache Point Observatory
(MaNGA) [13], which is part of the Sloan Digital Sky Survey (SDSS). The final Data Release 17
(DR17) in late 2021 contains ∼ 10 100 spectral cubes of unique galaxies. The MaNGA survey
covers galaxies in a large range of stellar masses and colors [14]. Each galaxy has been observed
with a bundle of fibers, each 2′′ in size. Every bundle contains between 19 fibers (12′′ coverage)
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to 127 fibers (32′′ coverage) [15]. The survey targets were selected so that to be covered within
1.5–2.5 effective radii by these bundles, thus providing spatial information for most of the galaxy.
Circular fibers joint into bundles cannot provide a 100% filling factor, so a dithering technique
was used. The final spectral cubes have a spatial sampling of 0.5′′, while the effective spatial
resolution is 2.3–2.5′′ [16]. MaNGA provides flux-calibrated spectral cubes ready for scientific
analysis and the Data Analysis Pipeline (DAP, [17] results including 2D maps of the parameters
determined by fitting spectra with ppxf [18]. To identify the CR galaxies and other galaxies with
kinematical misalignment, we visually inspected the DAP maps extensively using our web services
https://manga.voxastro.org, https://ifu.voxastro.org.

2.2 Counter-rotation sample compilation

To find galaxies with counter-rotating disks and other kinematical oddities, we checked the
maps of stellar velocity, velocity dispersion, ionized gas velocities and the Legacy Survey images
to make sure of disk morphology. The main kinematic feature of stellar counter-rotation is the two
off-center peaks in stellar velocity dispersion maps ([8], see examples in Fig. 1). In some prominent
cases the central and external parts of the galaxy rotate in opposite directions, making an S-like
shape of the rotation curve along the major axis. We also noted CR candidates with less obvious
features, namely the very elongated 𝜎-peak associated with the non-regular rotation in the central
part of the galaxy, clearly demonstrating the disk morphology at the same time.

In total we identified 56 counter-rotating disk galaxies, including 30 reliable and 26 probable
galaxies. Factually, we performed the sample review in two steps, first using Data Release 16 (DR16,
≈ 4700 targets) published in 2020 and then reviewing the new data delivered in the final DR17
(≈ 5400 spectra) published in late 2021. In addition, we compiled a list of ≈ 600 galaxies with
different kinematical oddities (purely gas-stellar counter-rotation, polar disks/rings, S-like rotation
curve, gas-stellar misalignment).

2.3 Analysis of sample galaxies

We analysed the MaNGA science-ready spectral cubes of the identified CR galaxies using the
NBursts full-spectral fitting technique [19] to get kinematical and stellar ages and metallicity maps
as well as best-fit models for the next step of analysis. Note that for this part of the analysis only
the galaxies identified in DR16 were used, since they were compiled earlier. We plan to perform a
homogeneous analysis for the entire sample soon.

The next step in the processing is to recover the line-of-sight stellar velocity distribution
(LOSVD) in a nonparametrical way. Two counter-rotating stellar disks cause the stellar LOSVD at
some position (especially along the main kinematic axis) to have a complex shape of two peaks. Such
LOSVD cannot be fitted against the Gauss-Hermite parametrization used in NBursts. Therefore,
the non-parametrical LOSVD analysis is an important ingredient in the studying of the CR galaxies.
Briefly, the non-parametric LOSVD analysis can be considered as a linear problem and requires
knowledge of the unbroadened galaxy spectrum, which can be taken from the first NBursts fitting
step.

The convolution of an unbroadened galaxy spectrum with an unknown LOSVD can be written
as follow:

𝑌 = 𝐴 · L −→ ||𝑌 − 𝐴 · L|| + 𝜆𝑅 · L → min,
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where matrix 𝐴 consists of the unbroadened spectrum shifted by one pixel, vector 𝑌 is the observed
galaxy spectrum at a given slit position, L is the desired solution. This problem can be solved
using the standard least square method. However, the solution is very sensitive to the noise in the
data, therefore we also added regularization (matrix 𝑅) to the algorithm. The regularization with
a variable coefficient 𝜆 imposes an additional condition on the solution: the smoothness of the
function (L2 metric), first or second derivatives, and the tendency of the solution to zero at high
speeds. A detailed description of the technique we used is presented in [20].

The next step is estimating a fraction of the counter-rotating stellar component based on the
non-parametrically recovered LOSVD. We analysed spectra of each individual spatial bin of the
MaNGA cubes, but for simplicity we extract the 2D LOSVD along the major kinematical axis
using the pseudo-slit package.1 The instrumental dispersion of the MaNGA spectra is as high as
69 km s−1, hence the rotation (line-of-sight) amplitude must be high to identify an X-like structure
(double-peaked distribution along the slit). Of the sample of analyzed galaxies, 14 objects clearly
show the X-shaped LOSVD. Then we modelled the 2D LOSVDs by means of a simple, where
LOSVDs in every spatial bin was independently approximated by the sum of two Gaussians along
the velocity axis, while the total flux in individual Gaussians was described by an exponential
brightness profile along the slit. As a result, it was possible to obtain a fairly accurate kinematics
of the galaxy components as well as the contributions of the disks to the integral luminosity.

3. Follow-up observations and analysis

Only some galaxies show a clear kinematical bimodality of disks, based on the MaNGA data. It
is likely due to the relatively low spectral resolution and signal-to-noise ratio in the data. Therefore,
we initiated a follow-up spectroscopic program at the 6-m Russian telescope (BTA) to obtain deep
long-slit spectra which would allow us to precisely determine the kinematical structure and stellar
population properties of the counter-rotating disks. At the moment, 8 CR galaxies have been
observed using the universal spectrograph SCORPIO-2 [21] (see Table 1) with a 0.5′′ slit and a
1200@540 grism. This mode provides an instrumental dispersion about 50 km s−1, which is better
than the MaNGA one (≈ 75 km s−1). Long total exposures (typically 2h) allowed us to obtain
deep spectra, which we analyzed in the same manner as described in Section 2.3. The examples
of the radial profiles of the determined kinematical and stellar population parameters for two CR
galaxies are shown in Fig. 2. Thanks to high quality SCORPIO-2 spectra, the non-paramertrical
LOSVD recovery and its analysis turn out better than the MaNGA results. Fig. 3 demonstrates the
difference in the recovered LOSVD of MaNGA 1-115097 for the MaNGA and SCORPIO-2 spectra.
Indeed, we were able to estimate the fraction of counter-rotating stars for all the 8 galaxies, while
the analysis of the MaNGA data failed for 4 targets where the CR fraction is low (see Table 1).

4. Summary

In this proceeding we present the progress on our ongoing project to study galaxies with counter-
rotating stellar discs identified in the MaNGA spectroscopic survey. Visually inspecting the entire
MaNGA sample, we found 56 counter-rotating galaxies, including 30 reliable and 26 probable

1https://pypi.org/project/pseudoslit/
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σstarvstar vgas

Figure 1: Kinematical maps (stellar velocity, velocity dispersion, and ionized gas velocity) for galaxies with
counter-rotating stellar disks. The images were taken from the Legacy Survey. The blue and red lines show
the MaNGA field of view and the SCORPIO-2 long-slit orientation respectively.
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Figure 2: Two examples of the radial profiles of the parameters determined from the SCORPIO-2 spectra
by means of one-component NBursts analysis.
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MaNGA ID Age, Gyr [Fe/H], dex CR loc. Mass, WBTA WMaNGA

CR Main CR Main 109 M⊙

1-115097 3 5 0.0 -0.5 inner 26.4 15% —
1-136248 4 7 -0.3 0.1 outer 34.8 78% 81%
1-248869 4 9 -0.4 0.0 outer 105 49% 47%
1-37062 2 3 0.1 -0.5 inner 15 ∼ 5% —
1-37068 1.5 2.5 0.1 -0.3 inner 23.7 ∼ 6% —
1-38543 2.5 5 -0.2 0.1 outer 31.6 31% 21%
1-635506 2.5 3 0.0 -0.3 inner 16.6 ∼ 5% —
1-94690 2.5 6 0.0 -0.6 inner 24.4 21% 14%

Table 1: The stellar population parameters of the counter-rotating (left numbers) and old (right) disks of the
galaxies observed with the BTA: the location of the counter-rotating disk, galaxy mass [22], contribution into
integral luminosity, determined in the non-parametric LOSVD analysis from the BTA and MaNGA spectra.
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Figure 3: A comparison of the non-parametric LOSVDs obtained from the MaNGA IFU spectrum and the
long-slit BTA spectrum in equal scales.

galaxies and around 600 galaxies showing other signs of kinematical misalignment (gas-stellar
counter-rotation, polar disks/rings, etc.). We followed 8 CR galaxies up from the parent sample
with the SCORPIO-2 spectrograph mounted at the 6-m telescope (BTA). The higher spectral
resolution and signal-to-noise of the SCORPIO-2 data allowed us to estimate more accurately the
light fraction of the counter-rotating stellar disks, which turned out to be in a wide range (5–80%).
It is assumed that the later formed stellar CR component rotates in the opposite direction relative
to the main body of the galaxy. First of all, our sample contains galaxies with both extended
and compact CR disks, suggestive a dichotomy of properties. We noticed that extended CR disks
possess highest light fractions and inhabit the most massive galaxies. This gives clear evidence for
the dichotomy of the population of counter-rotating galaxies.

We plan to apply the spectral decomposition technique to the obtained SCORPIO-2 data in order
to accurately estimate the stellar population parameters and discuss different formation scenarios,
having in hand the whole set of parameters such as the light and mass fraction of CR disks, their
spatial distribution, age, and metallicity.
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