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1. Introduction

At the end of its life cycle a massive star undergoes continuous gravitational collapse. The
result of such a process should be a black hole [1–3]. Within a short appropriate time period the
star’s surface crosses its gravitational radius and continues to collapse to a spacetime singularity.
However, for a distant observer, the star’s surface will never cross its gravitational radius because
the coordinate time 𝑡 tends to infinity whereas the coordinate 𝑟 tends to the gravitational radius 𝑟𝑔.
The event horizon will never form for a distant observer. So we can’t get any information from the
region 𝑟 < 𝑟𝑔. Thus, from a practical point of view, it makes no sense to consider the region inside
the gravitational radius. The question is what happens if we exclude the region 0 ≤ 𝑟 < 𝑟𝑔 and
consider only the region 𝑟𝑔 ≤ 𝑟 < +∞? In this case a black hole represents a non-singular point.
We show that for a distant observer there is no difference between these models.

The system 𝐺 = 𝑐 = 1 will be used throughout the paper.

2. A black hole as a point

The exterior geometry of a spherically symmetric black hole is described by the well-known
Schwarzschild solution which, in coordinates {𝑡 , 𝑟 , \ , 𝜑}, is given by:

𝑑𝑠2 = −
(
1 − 2𝑀

𝑟

)
𝑑𝑡2 +

(
1 − 2𝑀

𝑟

)−1
𝑑𝑟2 + 𝑟2𝑑Ω2 ,

𝑑Ω2 = 𝑑\2 + sin2 \𝑑𝜑 .

(1)

Here 𝑀 is the mass of the black hole. One can see that the metric components 𝑔𝑟𝑟 and 𝑔𝑡𝑡
change their sign when 𝑟 = 𝑟𝑔. So one can say that space become time and vice versa. Also the
Kretschmann scalar diverges only at 𝑟 = 0 and has a finite value at 𝑟 = 𝑟𝑔. So to exclude the singular
point from consideration we perform the following coordinate transformation:

𝑥 = 𝑟 − 2𝑀 = 𝑟 − 𝑟𝑔 (2)

and obtain:

𝑑𝑠2 = −
(
1 +

𝑟𝑔

𝑥

)−1
𝑑𝑡2 +

(
1 +

𝑟𝑔

𝑥

)
𝑑𝑥2 + (𝑥 + 𝑟𝑔)2𝑑Ω2 . (3)

And the final step is to consider only positive values of 𝑥. This model represents a point at 𝑥 = 0.
This point is not singular because the Kretschmann scalar is finite at 𝑥 = 0. Now we find out what
difference the distant observer sees.

3. A shadow

In this paper we consider the question of a shadow which might be cast by a point in our model
and will show that the shadow is the same. We can’t consider precession of the perihelion and light
rays deflection [4] within this paper but for a distant observer there is no difference between these
two models.
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To consider the question of a shadow which might be cast by the object at 𝑥 = 0 one should,
first of all, find the energy 𝐸 , the angular momentum 𝐿, and the impact parameter 𝑏 = 𝐿

𝐸
[5, 6]. The

energy and the angular momentum for metric (3) are given by:

𝐸 =

(
1 +

𝑟𝑔

𝑥

)−1
(
𝑑𝑡

𝑑_

)
,

𝐿 =
(
𝑥 + 𝑟𝑔

)2 𝑑𝜑
𝑑_

,

(4)

here _ is the affine parameter. We can also consider only the equatorial plane motion \ = 𝜋
2 due to

the spherical symmetry.
Substituting (4) into the condition 𝑔𝑖𝑘 𝑑𝑥𝑖

𝑑_
𝑑𝑥𝑘

𝑑_
and solving it for 𝑑𝑟

𝑑_
one can obtain:

¤𝑟2 +𝑉𝑒 𝑓 𝑓 = 0 ,

𝑉𝑒 𝑓 𝑓 =
𝐿2𝑥2

(𝑥 + 𝑟𝑔)3 − 𝐸2 .
(5)

Here 𝑉𝑒 𝑓 𝑓 is the effective potential.
To calculate the shadow one should know the turning point 𝑥𝑡 𝑝 i.e. 𝑉 ′

𝑒 𝑓 𝑓
(𝑥𝑡 𝑝) = 0 (𝑉 ′ ≡ 𝑑𝑉

𝑑𝑥
).

From the definition (5) one can obtain:

𝑉 ′
𝑒 𝑓 𝑓 =

𝑟𝑔 − 2𝑥
(𝑥 + 𝑟𝑔)4 = 0 ,

𝑥 =
𝑟𝑔

2
.

(6)

Now we should substitute the turning point 𝑥𝑡 𝑝 into (5) to obtain the size of the shadow:

(𝑥 + 𝑟𝑔)3 = 𝑥𝑏2 ,

𝑏 =
√

27
𝑟𝑔

2
= 3

√
3𝑀 .

(7)

And this is exactly the same result as in the Schwarzschild model. So for a distant observer
there is no difference if the central object is a black hole or a point.

4. Discussion

We have found that for a distant observer there is no difference between the two models i.e. the
standard black hole model or a point. However, if we consider a black hole as a spacetime point at
𝑥 = 0 then we exclude the singularity because the Kretschmann scalar:

𝐾 ≡ 𝑅𝑖𝑘𝑙𝑚𝑅𝑖𝑘𝑙𝑚 =
12𝑟𝑔

(𝑥 + 𝑟6
𝑔)
, (8)

is finite at 𝑥 = 0:
𝐾 |𝑥→0 =

12
𝑟4
𝑔

. (9)

This is because the point 𝑥 = 0 corresponds to the event horizon 𝑟 = 𝑟𝑔 in the Schwarzschild
model and the Kretschmann scalar is also finite at 𝑟 = 𝑟𝑔.

3



P
o
S
(
M
U
T
O
2
0
2
2
)
0
4
2

Aspects of the gravitational collapse of massive stars Vitalii Vertogradov

However, for a distant observer the star’s surface will never cross its gravitational radius. Thus,
one can’t consider a spacetime point. For a realistic physical situation one should consider a ball
of matter of radius Y around the point 𝑥 = 0. It is worth noting that this ball is regular everywhere
i.e. this ball is not singular. For example, a magnetic field could exist whose lines can pass through
this ball. So observing the manifestations of these lines could be possible, and these possible
observations distinguish our model from the standard Schwarzschild one.
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