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Anew alternative approach to calculate the ratio of the surface to volume components of the nuclear
symmetry energy is proposed in the framework of the coherent density fluctuation model (CDFM).
A new expression (scheme II) for the ratio is derived consistentlywithin themodel. This expression
appears in a formmore direct and physicallymotivated than the expression (scheme I) that was used
in our previous works within the CDFM and avoids preliminary assumptions and mathematical
ambiguities in scheme I. The calculations are based on the Skyrme and Brueckner energy-density
functionals for nuclear matter and on nonrelativistic Brueckner-Hartree-Fockmethodwith realistic
Bonn B and Bonn CD nucleon-nucleon potentials. The approach is applied to isotopic chains
of Ni, Sn, and Pb nuclei using nuclear densities obtained in self-consistent Hartree-Fock+BCS
calculations with SLy4 Skyrme effective interaction. The applicability of both schemes within
the CDFM is demonstrated by a comparison of the results with the available empirical data and
with results of other theoretical studies of the considered quantities. Although in some instances
the results obtained for the studied ratio and the symmetry energy components are rather close in
both schemes, the new scheme II leads to more realistic values that agree better with the empirical
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1. Introduction

One of most exciting topics of research in nuclear physics is currently the nuclear matter
symmetry energy that essentially characterizes the isospin-dependent part of the equation of state
(EOS) of asymmetric nuclear matter (NM) (see, e.g., Ref. [1]). While there is enough collected
information for the key EOS parameters such as the nuclear symmetry energy (NSE), the neutron
pressure, and the asymmetric compressibility (although the uncertainty of their determination is
still large), the volume and surface symmetry energies have been poorly investigated till now. For
example, the combined experiment at GANIL, where the VAMOS spectrometer was coupled with
the 4c INDRA detector to study the isotopic distributions produced in 40,48Ca+40,48Ca collisions at
35 MeV/nucleon, allowed one to estimate the relative contribution of surface and volume terms to
the symmetry energy in the nuclear EOS [2]. The knowledge of this contribution and, especially, the
relevance of the surface term are important to explore to what extent one can learn about the density
dependence of the symmetry energy in infinite nuclear matter (NM) from multifragmentation of
finite nuclei and from nuclear reaction dynamics.

Measurements of nuclear structure characteristics including masses, densities, and collective
excitations have resolved some of the basic features of the EOS of nuclear matter. The EOS
allows one to constrain the bulk and surface properties of the nuclear energy-density functionals
(EDFs) quite effectively via the symmetry energy and related properties. The latter are significant
ingredients of the EOS and their study in both asymmetric nuclear matter and finite nuclei are of
particular importance.

The volume and surface contributions to the NSE and their ratio at zero temperature were
calculated in Ref. [3] within the CDFM using two EDFs, namely, the Brueckner [4, 5] and Skyrme
(see Ref. [6]) ones. The CDFM weight function was obtained by means of the proton and neutron
densities obtained from the self-consistent deformed Hartree-Fock (HF)+BCSmethod with density-
dependent Skyrme interactions. The obtained results in the cases of Ni, Sn, and Pb isotopic chains
were compared with results of other theoretical methods and with those from approaches which
used experimental data on binding energies, excitation energies to isobaric analog states (IAS), and
neutron-skin thicknesses. An investigation of the thermal evolution of the NSE components and
their ratio for isotopes belonging to the same chains around the double-magic nuclei performed in
Ref. [7] has extended our previous analysis of these nuclei for temperatures different from zero.

In this paper (see also Ref. [8]), we revisit the expression for the ratio between the volume
and surface components to the NSE within the CDFM proposed in Refs. [3, 9] and suggest a new
alternative approach in a more direct and physically motivated way to calculate this ratio. The
main aim of the work is to avoid the preliminary assumptions and mathematical ambiguities in
our previous scheme I. To achieve this goal, in the new scheme II, we apply the general relation
based on the Droplet Model between the symmetry energy and its components to the building
units ("fluctons") of the CDFM model, and we construct from them the ratio between the NSE
components for finite nuclei following the standard CDFM procedure. This provides more solid
physical grounds to the new scheme that is expected to lead to more reliable results. We also search
for the dependence of the results on several sets of nuclear potentials. In the new approach we
perform calculations for the symmetry energy components (+ (�) and (( (�) and their ratio for the
same isotopes in Ni (� = 74 − 84), Sn (� = 124 − 156), and Pb (� = 202 − 214) chains considered
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before and compare the obtained results with the previous ones (including (+ (�), (( (�), and their
ratio ^) obtained by the procedure in Refs. [3, 9]. The applicability of our both schemes within the
CDFM is also demonstrated by a comparison of the results with the available empirical data and
with results of other theoretical studies for the considered quantities.

2. Theoretical scheme

2.1 Main relationships for EOS parameters in nuclear matter and in finite nuclei

The Bethe-Weizsäcker semi-empirical mass formula describes both properties of symmetric
(finite) nuclear matter as well as the essential dependence of the finite nucleus ground-state energy
on the isospin asymmetry (polarization) [10–13]:

� (�, /) = −� + �(�−1/3 + ((�) (# − /)
2

�2 + ��
/2

�4/3 + �38 5
/2

�2 + �4G
/4/3

�4/3 + 0Δ�
−3/2. (1)

In Eq. (1) � ' 16MeV is the binding energy per particle of bulk symmetric matter at saturation. �( ,
�� , �38 5 , and �4G correspond to the surface energy of symmetric matter, the Coulomb energy of a
uniformly charged sphere, the diffuseness correction, and the exchange correction to the Coulomb
energy, respectively. The last term gives the pairing correction, Δ is a constant and 0 = +1 for
odd-odd nuclei, 0 for odd-even, and -1 for even-even nuclei. ((�) is the symmetry energy expressed
by the volume (+ (�) and modified surface component (( (�) in the droplet model (see Ref. [13],
where it is defined as (∗B):

((�) = (+ (�)

1 + (
( (�)
(+ (�) �

−1/3
=

(+ (�)
1 + @(�)�−1/3 , (2)

where

@(�) ≡ (( (�)
(+ (�) . (3)

We note that in the present work we use Eq. (2) as a basic relation between the symmetry energy
((�) and its volume (+ (�) and surface (( (�) components. The reason to use Eq. (2) in contrast to
the relation in another approach used in, e.g., Refs. [14–17], and also in our work [3], was discussed
in detail in our previous work [9]. It is motivated by the necessity to have a correct behavior of the
denominator in Eq. (2) in the infinite nuclear matter limit. More precisely, in the limit �→ ∞ the
ratio in Eq. (2) ((/(+ → 0, so that [((/(+ ]�−1/3 → 0 and the symmetry energy in Eq. (2) has
the correct limit ( → (+ . Contrary to this, in the approach of Refs. [14–17] in the limit � → ∞
the term [(+ (�)/(( (�)]�−1/3 is not well determined. The use of the latter approach needs a
condition to be imposed, namely the surface coefficient (( (�) to go to zero more slowly than �−1/3

as � → ∞. This is the reason to use in our work Eq. (2) instead of the relation in the approach in
e.g., Refs. [14–17].

At very large � we may write the symmetry energy in the known form (see Ref. [11]):

((�) ' (+ (�) − (
( (�)
�1/3 , (4)
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which follows from Eq. (2) for large �.
The relations of (+ (�) and (( (�) with ((�) in terms of @(�) can be found from Eqs. (2) and

(3):

(+ (�) = ((�)
[
1 + @(�)

�1/3

]
, (5)

(( (�) = @(�)((�)
[
1 + @(�)

�1/3

]
. (6)

The following expression for the ratio of the volume to the surface symmetry energy coefficients
was given by Danielewicz [14] (see also Ref. [18]):

^(�) = (
+ (�)
(( (�)

=
3
A0

∫
3A
d(A)
d0

{
(#" (d0)
(#" [d(A)] − 1

}
, (7)

where (#" [d(A)] is the nuclear matter symmetry energy, d(A) is the half-infinite nuclear matter
density, d0 is the nuclear matter equilibrium density, and A0 is the radius of the nuclear volume per
nucleon. The latter two quantities are related by

4cA3
0

3
=

1
d0
. (8)

Herewe give for completeness the following general expression for the nuclearmatter symmetry
energy used in Eq. (7):

(#" (d) = 1
2
m2� (d, X)
mX2

����
X=0

= 04 +
?#"0

d2
0
(d − d0) +

Δ #"

18d2
0
(d − d0)2 + · · · , (9)

where � (d, X) is the energy per particle for nuclearmatter that depends on the density and the isospin
asymmetry X = (d= − d?)/d with the baryon density d = d= + d?, d= and d? being the neutron
and proton densities. The parameter 04 is the symmetry energy at equilibrium [04 = (

#" (d0)],
while the pressure ?#"0 and the curvature Δ #" have the corresponding forms:

?#"0 = d2
0
m(#"

md

����
d=d0

, (10)

Δ #" = 9d2
0
m2(#"

md2

����
d=d0

. (11)

2.2 EOS parameters of finite nuclei in the CDFM

We calculate the EOS parameters in finite nuclei, such as the nuclear symmetry energy and
its surface and volume components using the CDFM (e.g., Refs. [19, 20]). The model is based
on the X-function limit of the generator coordinate method [20, 21], it is a natural extension of
the Fermi-gas model and includes ## correlations of collective type. An important feature of the
CDFM is that it allows us to make the transition from nuclear matter quantities to the corresponding
ones in finite nuclei. In the CDFM the one-body density matrix d(r, r′) is a coherent superposition

4
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of the one-body density matrices d#"G (r, r′) for spherical “pieces” of nuclear matter (“fluctons”)
with radius G and density dG (r) = d0(G)Θ(G − |r|), where

d0(G) =
3�

4cG3 , (12)

in which all A nucleons are homogeneously distributed:

d#"G (r, r′) = 3d0(G)
91(:� (G) |r − r′ |)
(:� (G) |r − r′ |) Θ

(
G − |r + r′ |

2

)
. (13)

It has the form:
d(r, r′) =

∫ ∞

0
3G |� (G) |2d#"G (r, r′). (14)

In Eq. (13) 91 is the first-order spherical Bessel function and

:� (G) =
(
3c2

2
d0(G)

)1/3
≡ V
G

(15)

with

V =

(
9c�

8

)1/3
' 1.52�1/3 (16)

is the Fermi momentum of the nucleons in the flucton. The nucleon density distribution in the
CDFM has the form:

d(r) =
∫ ∞

0
3G |� (G) |2d0(G)Θ(G − |r|). (17)

It can be seen from Eq. (17) that in the case of monotonically decreasing local density (3d/3A ≤ 0)
the weight function |� (G) |2 can be obtained from a known density (obtained theoretically or
experimentally):

|� (G) |2 = − 1
d0(G)

3d(A)
3A

����
A=G

. (18)

It has been shown in our previous works [3, 22, 23] that the following expression for the nuclear
symmetry energy in finite nuclei ((�) can be obtained within the CDFM on the base of the infinite
matter one (#" (d) (at temperature ) = 0 MeV) by weighting it with |� (G) |2:

((�) =
∫ ∞

0
3G |� (G) |2(#" [d(G)] . (19)

Here we would like to note that when our procedure is applied to quantities of (infinite) nuclear
matter, the self-consistency requires the weight function to reduce to Dirac X-function. For instance,
when the self-consistency is applied to the density d( |r|) and the symmetry energy (#" [d( |r|)]
in nuclear matter it leads from Eqs. (17) and (19) to the identities:

d#" ( |r|, G) =
∫ ∞

0
3G ′X(G ′ − G)d0(G ′)Θ(G ′ − |r|) = d0(G)Θ(G − |r|), (20)

(#" [d#" ( |r|, G)] =
∫ ∞

0
3G ′X(G ′ − G)(#" [d#" ( |r|, G ′)] = (#" [d0(G)Θ(G − |r|)] . (21)
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In our already mentioned works (including Ref. [9]) we applied the CDFM in the framework
of the self-consistent Skyrme-Hartree-Fock plus BCS method to calculate the volume and surface
components of the symmetry energy and their ratio in the Ni, Sn, and Pb isotopic chains. In our
first scheme to calculate the ratio ^(�) we started from the expression of Eq. (7) (see, e.g., [14, 18])
making in it a preliminary assumption replacing the density d(A) for the half-infinite nuclear matter
in the integrand by the density distribution of a finite nucleus, namely, by the expression in the
CDFM [Eq. (17)]. Following the procedure whose details are given in our work [9] and using
Eqs. (20) and (21), we obtain the formula for ^(�) in the form:

^(�) = 3
A0d0

∫ ∞

0
3G |F (G) |2d0(G)

∫ G

0
3A

{
(#" (d0)
(#" [d0(G)]

− 1
}

(22)

that leads finally to

^(�) = 3
A0d0

∫ ∞

0
3G |F (G) |2Gd0(G)

{
(#" (d0)
(#" [d0(G)]

− 1
}
. (23)

The right-hand side of Eq. (23) is an one-dimensional integral over G, the latter being the radius
of the “flucton” that is perpendicular to the nuclear surface. We refer to the expression in Eq. (23)
as scheme I, because this was the first equation that we used for the numerical calculations of the
results presented in [3, 9]. We note that a careful analysis of the integration interval in Eq. (23)
required in order to avoid possible singularities in the integrand in some G ranges was carried out
in our previous works.

2.3 An alternative approach in the CDFM to calculate the ratio of surface to volume
components of the nuclear symmetry energy

As mentioned in the Introduction, the main aim in the present work is to provide a new
scheme to calculate the ratio @(�) as defined in Eq. (3). Here we would like to underline the main
differences in the construction of scheme II in comparison with the previous scheme I: i) we do not
use the method in Refs. [14, 18], and ii) we avoid the above mentioned assumption in subsection
2.2, namely the replacement of the density d(A) for the half-infinite nuclear matter by the density
distribution of a finite nucleus. A third and important reason to choose a new scheme is that the
integrand in Eq. (23) for ^ in scheme I presents singularities for some of the potentials (e.g., for the
Brueckner one). Thus, the results for ^ become extremely sensitive to the choice of the integration
interval, mainly to the value of the lower limit of integration in Eq. (23). In the new scheme II we
start from the general relationship [Eq. (2)] between the NSE ( and its components (+ and (( .
The procedure of the derivation of @(�) for finite nuclei is as follows: i) we determine the ratio
@(G) = (( (G)/(+ (G) for the “fluctons” of the CDFM from the basic Eqs. (2) and (4), and ii) we
construct @(�) within the CDFM rules weighting @(G) by the weight function |� (G) |2. First, to
construct @(G) = (( (G)/(+ (G) in the G-flucton we recall that the G-flucton is a sphere of nuclear
matter of radius G with density d0(G). This implies that inside each flucton we may apply Eq. (4)
in the form ((/(+ ' (1 − (/(+ )�1/3, with �, the number of nucleons in the flucton, given by
(G/A0)3 [d0(G)/d0] [see Eqs. (8) and (12)], and ( the nuclear matter symmetry energy in the flucton
[(#" (d0(G))] with volume component (+ ' (#" (d0). This results in the following expression

6
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for @(G):

@(G) = (( (G)
(+ (G) =

G

A0

[
d0(G)
d0

]1/3 [
1 − (

#" [d0(G)]
(#" (d0)

]
. (24)

Weighting @(G) by the function |� (G) |2 leads to the following relationship for the ratio (3):

@(�) =
∫ ∞

0
3G |� (G) |2@(G) =

∫ ∞

0
3G |� (G) |2 G

A0

[
d0(G)
d0

]1/3 [
1 − (

#" [d0(G)]
(#" (d0)

]
. (25)

We refer to the expression in Eq. (25) as scheme II. Here we would like to note the following:
i) the expression Eq. (24) for a flucton is obtained in a direct and natural way starting from the
known formula Eq. (4) that follows from the general relationship Eq. (2) at large �; ii) Eq. (25) is
obtained without preliminary assumptions that were imposed to obtain Eq. (23) in scheme I and is
free from singularities; iii) as a result of i) and ii) the calculated quantity 1/@ = (+ /(( that follows
from Eq. (25) is not equal to the previously calculated quantity ^ following Eq. (23). We note
that both quantities are obtained within different schemes, though both are within the framework
of the CDFM. Of course, the values of the results for 1/@(�) coming from Eq. (25) and ^(�)
[Eq. (23)] can be compared and this is done in the next section, analyzing in this way the role of
the assumptions made in approach I and the new direct CDFM scheme II (the latter being without
extra assumptions and free from singularities) on the studied quantities.

In the next section 3 we present our results for the new ratio @(�) as well as the new CDFM
results for the symmetry energy components (+ (�) [Eq. (5)] and (( (�) [Eq. (6)] in terms of
((�) [Eq. (19)] and @(�) [Eq. (25)], in comparison with our previous results for the corresponding
quantities in the case of the three isotopic chains of Ni, Sn, and Pb using Skyrme, Bruckner, Bonn
B and Bonn CD potentials [9]. The self-consistent Skyrme-HF plus BCS method is used in the
calculations of the nuclear densities of these nuclei and the CDFM weight function |� (G) |2. The
results for the ratio 1/@ are presented and discussed in relation to the values of ^ and compared with
the available empirical data and with results of other theoretical considerations.

3. Results and discussion

We start our analysis with the two basic quantities entering the integrands in Eq. (25) for the
ratio @(�), namely the symmetry energy of nuclear matter (#" [d0(G)] in a flucton with density
d0(G) and the weight function |� (G) |2. Then, obtaining the symmetry energy in finite nuclei within
the CDFM from Eq. (19) its volume and surface components in the new approach can be calculated
from Eqs. (5) and (6), respectively.

As an example, we show first in Fig. 1 the results for the symmetry energy ((G) of the double-
magic nucleus 78Ni corresponding to nonrelativistic BHF results with realistic Bonn B and Bonn
CD potentials as well as to the Brueckner and Skyrme EDFs, for which analytical expressions for
(#" (G) can be found in Refs. [3, 22–24]. As can be seen in Fig. 1, the symmetry energy derived
from the energy density functional of Brueckner et al. [4, 5] goes extremely down below G = 4 fm in
comparison with the other three cases. The latter exhibit a smooth behavior and their corresponding
curves are close to each other. The Brueckner symmetry energy curve behaves similarly to them in
the range G > 4 fm. The reason for the particular behavior of ((G) in the case of Brueckner EDF
lies in its parametrization as a function of the density performed in nuclear matter calculations.

7
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Figure 1: The symmetry energy ((G) of the double-magic nucleus 78Ni as a function of the flucton radius G
[related to its density d0 (G) = 3�/(4cG3)] calculated with Brueckner EDF (black solid line), Skyrme EDF
(black dashed line) and BHF method with Bonn B (red solid line) and Bonn CD (red dashed line) potentials
from [25, 26].

The symmetry energy versus G plotted in Fig. 1 corresponds to the Brueckner curve displayed in
Fig. 5 of Ref. [9], where the symmetry energy is given versus the density d, as follows: the region
G ≤ 4 fm corresponds to the right "wing" after the maximum of (#" (d) at around d = 0.24 fm−3

(see Fig. 5 of Ref. [9]), while the region G > 4 fm refers to the left "wing" before the maximum.
The behavior of ((G) in the case of the Brueckner EDF shows its isospin instability. Due to this
fact, a lower cutoff is needed to compute Eqs. (19) and (25), but this is naturally supplied by the
function |� (G) |2 as explained in the discussions that follow. Here we should note that the observed
differences of the symmetry energy at G < 4 fm in the particular case of 78Ni (see Fig. 1) provide
us with a hint about the range of the lower limit of integration in Eq. (25) in order to get correct
physical values for the ratio of the surface to volume components of the nuclear symmetry energy.

In Fig. 2 are given the CDFM weight functions |� (G) |2 of double-magic 78Ni, 132Sn, and
208Pb nuclei as a function of the flucton radius G. Their densities are obtained in self-consistent
HF+BCS calculations with SLy4 interaction. The function |� (G) |2 which is used in Eqs. (19), (23),
and (25) has the form of a bell with a maximum around G = '1/2 at which the value of the density
d(G = '1/2) is around half of the value of the central density equal to d2 [d('1/2)/d2 = 0.5].
Namely, in this region around d = d2/2 the values of different (#" (d) play the main role in the
calculations. Therefore, to fully specify the role of both quantities (#" [d0(G)] and |� (G) |2 in the
expression (25) for the ratio @(�) and to determine the relevant region of densities in finite nucleus
calculations, we apply a physical criterion related to the weight function |� (G) |2. The latter contains
the nuclear structure information through the total nuclear density. In this respect, the width Γ of
the weight function |� (G) |2 at its half maximum (which is illustrated in Fig. 2 on the example of
78Ni nucleus) is a good and acceptable choice.

As it is known, the central density of the nucleus has values around d2 ≈ 0.10-0.16 fm−3.
Consequently, the maximum of the weight function |� (G) |2 is around d('1/2) ≈ 0.05-0.08 fm−3. In
the case of 78Ni (see Fig. 6 in Ref. [9]) the maximum of |� (G) |2 is at d = 0.05 fm−3 and, within its

8
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Figure 2: The weight functions |� (G) |2 [Eq. (18)] of double-magic 78Ni, 132Sn, and 208Pb nuclei calculated
in the Skyrme HF+BCS method with SLy4 force.

Ni Sn Pb

1/@ ^ 1/@ ^ 1/@ ^

Skyrme 2.07-2.36 1.53-1.70 1.63-2.37 1.58-2.02 1.97-2.09 1.67-1.71
Brueckner 1.14-1.24 2.22-2.44 0.94-1.16 2.40-2.90 1.01-1.04 2.62-2.64
Bonn B 1.03-1.08 1.80-1.90 0.83-0.97 2.00-2.48 0.84-0.88 2.54-2.80
Bonn CD 1.01-1.06 1.80-2.00 0.82-0.95 2.00-2.48 0.81-0.83 2.54-2.80

Table 1: The ranges of changes of 1/@ (scheme II) and ^ (scheme I) [3, 9] with Skyrme and Brueckner EDFs
and BHF method with Bonn B and Bonn CD potentials for the Ni, Sn, and Pb isotopic chains.

width range, the density d is between 0.12 fm−3 and 0.01 fm−3. Thus, from the combined analysis of
(#" (d) and |� (G) |2 it turns out that the relevant values of the NM symmetry energy are typically
those in the region around d ≈ 0.01-0.12 fm−3 (see also the discussion in [9]). More specifically,
within the new approach we define the lower limit of integration as the lower value of the radius
G, corresponding to the left point of the half-width Γ. To test the sensitivity of this criterion, we
perform additional calculations taking Γ± 10%. In this case, the results for the ratio 1/@ of a given
nucleus displayed a very small sensitivity in the case of Bonn B and Bonn CD potentials, while in
the case of Brueckner and Skyrme EDFs the results when applying criteria related to Γ and Γ±10%
are almost identical. We also note that in the new scheme there are no singularities in the integrand
of Eq. (25) as those mentioned for the integrand of Eq. (23).

Next, we show in Fig. 3 the results of the calculations following from Eq. (25) of the ratio
1/@ = (+ /(( as a function of the mass number � for the isotopic chains of Ni, Sn, and Pb with SLy4
force. In Table 1 the values of this ratio obtained within the new scheme are compared with the
values of ^ [Eq. (23)] calculated from our previous scheme within the CDFM [3, 9]. We would like
to emphasize that this comparison is between quantities obtained in two different CDFM schemes

9
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Figure 3: The quantity 1/@ = (+ /(( [following from Eq. (25)] as a function of � for the isotopic chains
of Ni, Sn, and Pb obtained using Brueckner EDF (dashed line), Skyrme EDF (solid line) and BHF method
with Bonn B (dotted line) and Bonn CD (dash-dotted line) potentials from Refs. [25, 26]. The weight
function |� (G) |2 [Eq. (18)] used in the calculations is obtained by means of the densities derived within a
self-consistent Skyrme-Hartree-Fock plus BCS method with SLy4 force.

and it can serve basically to show the influence and the importance of the preliminary assumptions
and shortcomings made of scheme I and the advantage of the new scheme that is free from them.

In general, the values of 1/@ within the new CDFM scheme calculated using the Skyrme EDF
for the isotopic chains of Ni, Sn, and Pb are between 1.70 and 2.40. This range of values is similar
to the estimations for ^(�) [Eq. (23)] of Danielewicz et al. obtained from a wide range of available
data on the binding energies [16], of Steiner et al. [13], and from a fit to other nuclear properties,
such as the excitation energies to IAS and skins [15] 2.6 ≤ ^ ≤ 3.0 and from masses and skins [15]
2.0 ≤ ^ ≤ 2.8.

The values of 1/@ obtained using the Brueckner EDF for the Ni isotopic chain with SLy4
force are in agreement partly with that obtained in Ref. [18] by Dieperink and Van Isacker from the
analyses of masses and skins 1.6 ≤ ^ ≤ 2.0. The obtained values of 1/@ for Sn and Pb isotopes
using the Brueckner EDF together with the ones when using both Bonn potentials are close to
the value of 1.14 given by Bethe in Ref. [11] and to the estimated value of 1.1838 by Myers and
Swiatecki [12]. Generally, we can note that the results of the new scheme for 1/@, in particular
using Skyrme and Brueckner EDFs, cover reasonably the estimated values of ^ (between 1.14 and
2.80) in a better way than in the previous scheme.

Here we note the observed peaks in the ratio 1/@ at � = 78 and � = 132 for Ni and Sn isotopes,
respectively. They are more pronounced for the choice of the Skyrme EDF, less pronounced for
Brueckner EDF, and are somewhat smoothed out for Bonn B and Bonn CD potentials. We attribute
these peaks to the sharp nuclear density transition when passing double-magic nuclei, such as 78Ni
and 132Sn, in an isotopic chain. The peculiarities of d(A) (and consequently the derivative of d(A)
which determines the weight function |� (G) |2) for the closed shells lead to the existence of "kinks"
that had been found and discussed in our previous works [3, 7, 9, 22, 23]. In the case of Pb isotopic
chain (see Fig. 3) such kink does not exist at � = 208 and this reflects the smooth behavior without
kinks of ((�) [Eq. (19)] and related quantities for the Pb isotopic chain [22, 23]. Similar peaks in
the ratio ^ as a function of the mass number have been observed in our previous studies [3, 9].

10
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Figure 4: The symmetry energy ( [Eq. (19)] and its volume (+ [Eq. (5)] and surface (( [Eq. (6)] components
for the isotopic chains of Ni, Sn, and Pb obtained usingBrueckner EDF (dashed line), SkyrmeEDF (solid line)
and BHF method with Bonn B (dotted line) and Bonn CD (dash-dotted line) potentials from Refs. [25, 26].
The weight function |� (G) |2 [Eq. (18)] used in the calculations is obtained by means of the densities derived
within a self-consistent Skyrme-Hartree-Fock plus BCS method with SLy4 force.

The values of the symmetry energy ( [Eq. (19)] and its volume (+ [Eq. (5)] and surface
(( [Eq. (6)] components as functions of � deduced within the new scheme for the same isotopic
chains are presented in Fig. 4. The calculated symmetry energy for the three isotopic chains
and all considered potentials turns out to be between 24 and 31 MeV (see Fig. 4). In practice,
predictions for the symmetry energy vary substantially (28–38 MeV), e.g., an empirical value of
the symmetry energy 30 ± 4 MeV is given in Refs. [27, 28]. The values of the volume contribution
(+ to the NSE obtained within the new scheme in the case of Brueckner and Skyrme EDFs are
smaller than the ones derived from the previous CDFM scheme I (presented in Tables I and III of
Ref. [3]). We would like to emphasize that the results for (+ in the scheme II (between 29 and 34
MeV) are more realistic than the ones previously obtained within our scheme I, for instance, using
Brueckner EDF (between 41.5 and 43 MeV). The new results with scheme II are in good agreement
with the available phenomenological estimations, as follows: Ref. [15]: 30.0 ≤ (+ ≤ 32.5 MeV,
Ref. [17]: 31.5 ≤ (+ ≤ 33.5 MeV . In the case of Ni isotopic chain our previous calculations
[9] with SLy4 force provided values of the volume symmetry energy within 27.6 and 28.1 MeV
for Bonn B potential and within 28.4–29.1 MeV for Bonn CD potential. In the new approach for
the same potentials the corresponding values of (+ are larger by 2 MeV and are better compared
with the results presented in Refs. [15, 17]. Concerning the surface component of the NSE (( , it
is known that this component is poorly constrained by empirical data. Therefore, it is useful to
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test different EDFs and nuclear potentials within different approaches to collect more information
about it. Figure 4 shows that the range of the values obtained for (( and for Ni, Sn, and Pb isotopes
in the case of Skyrme EDF is 14–18 MeV. These results come closer to the limits on the surface
symmetry parameter 11 MeV≤ V ≤14 MeV established in Ref. [16]. The new CDFM scheme gives
larger values for the surface component in the case of the three other potentials (Brueckner, Bonn
B, and Bonn CD).

We would like to note that the same peculiarities (as for the ratio 1/@ = (+ /(( presented in
Fig. 3), namely "kinks" appear in the cases of (, (+ , and (( as functions of the mass number � at the
double-magic 78Ni and 132Sn isotopes. They are stronger or weaker and depending on the use of a
given nuclear potential. In Fig. 4 a kink appears for ((�) and (+ (�) not only for the double-magic
132Sn but also for the semimagic 140Sn nucleus. As was discussed in Ref. [3], the latter is related
to the closed 2 57/2 subshell for neutrons. Kinks of the � dependence of the symmetry energy and
its components in the Pb isotopic chain are not observed.

4. Summary and conclusions

In the present work, we provide an alternative approach (scheme II) to calculate the ratio
@(�) = (( (�)/(+ (�) of the surface to volume components of the NSE within the framework of
the CDFM in a more direct and simple way and having stronger physical grounds than the former
one (scheme I) that had been used in our previous works [3, 9]. In the new approach we firstly
determine the ratio @(G) for a flucton in the CDFM model from the basic Droplet Model mass
formula and then we use the convolution of @(G) with |� (G) |2 to construct @(�) for finite nuclei
following the standard CDFM procedure. In this way the new scheme avoids some conceptual and
mathematical shortcomings that were met in the previous scheme.

The results for @(�) and the components (( (�) and (+ (�) are obtained from calculations
based on Skyrme and Brueckner energy-density functionals for nuclear matter and nonrelativistic
Brueckner-Hartree-Fock method with realistic Bonn B and Bonn CD ## potentials. As in our
previous scheme, by applying the CDFM the finite nuclei densities from the isotopic chains of
Ni, Sn, and Pb are obtained in self-consistent Hartree-Fock+BCS calculations with SLy4 Skyrme
effective interaction.

We would like to note the dependence of the results for the ratio of (( to (+ on the effective
nuclear potentials used in the calculations. In this respect, the results of our calculations using
Skyrme EDF turn out to be close to the different estimations obtained from a fit to nuclear properties,
such as the excitation energies to IAS and neutron-skin thickness [15], masses, and others. The
values of 1/@ obtained using the Brueckner EDF for the Ni isotopic chain are in agreement with
those obtained in Ref. [18] from the analyses of masses and skins. In the case of Bonn B and Bonn
CD two-body potentials the results for the ratio 1/@ approach the estimated values from the works
of Bethe [11] and Myers and Swiatecki [12]. Overall, the results of the new scheme for 1/@ cover
reasonably the whole region of estimated values for ^ (between 1.14 and 2.80) and in some cases
are somewhat better than the values obtained in the previous scheme.

The values of the symmetry energy ( for the three isotopic chains and all considered potentials
are between 24 and 31 MeV that is in accordance with the region of its empirical values 30 ± 4
MeV given in Refs. [27, 28]. The results for the volume component (+ (�) of NSE in scheme II

12
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(between 29 and 34 MeV) are in good agreement with those of Refs. [15, 17] (between 30 and 33.5
MeV). The values of the surface contribution (( (�) in scheme II in the case of Skyrme EDF (14-18
MeV) come closer to the region of 11-14 MeV established in Ref. [16].

Analyzing the isotopic sensitivity of (+ (�), (( (�), and their ratio 1/@(�) we observe pe-
culiarities ("kinks") of these quantities as functions of the mass number � in the cases of the
double-magic 78Ni and 132Sn isotopes, as well as a "kink" of (+ (�) for 140Sn. No pronounced peak
at the double-magic nucleus with � = 208 in the Pb chain is found. The mentioned peculiarities
in the behavior of the corresponding curves for the same quantities have been observed also in our
previous CDFM scheme.

Finally, we point out that the results for the NSE components and their ratio obtained within
the two CDFM schemes are comparable in many considered cases and cover a range of values that
is compatible with the range of available empirical data and with other theoretical results, showing
the power of the CDFM method, that includes effects of nucleon-nucleon correlations of collective
type. However, we would like to emphasize that the presented comparison of the results of both
schemes is informative mainly for the role of the approximations made in scheme I, while scheme
II is free from those approximations and is considered to be more reliable and realistic leading to
results that are in better agreement with data.
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