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1. Introduction

In thermodynamics it is conventional to start with the energy potential 𝐸 in its natural
parametrization (𝑆,𝑌1, 𝑌2, ..., 𝑌𝑛−1). The latter define the energy representation through the fun-
damental relation 𝐸 = 𝐸 (𝑆,𝑌1, 𝑌2, ..., 𝑌𝑛−1) and first law of thermodynamics written by

𝑑𝐸 = 𝑇𝑑𝑆 +
𝑛−1∑︁
𝑖=1

𝑋𝑖𝑑𝑌
𝑖 =

𝑛∑︁
𝑎=1

𝐼𝑎𝐸
𝑎 . (1)

Here the intensive parameters 𝑋𝑖 are thermodynamically conjugate to the extensive ones 𝑌 𝑖 and
generally 𝑋𝑖 are known as chemical potentials. It is useful to encode the full set of energy
natural extensive parameters in a single vector ®𝐸 = (𝐸1, 𝐸2, ..., 𝐸𝑛) with their conjugate intensive
parameters given by ®𝐼 = (𝐼1, 𝐼2, ...., 𝐼𝑛). Consequently, the equations of state can be written in the
following concise form

𝐼𝑎 =
𝜕𝐸 ( ®𝐸)
𝜕𝐸𝑎

����
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛

, (2)

where the parameters in the subscript are kept fixed except for �̂�𝑎.
By applying a Legendre transformation L along one or several natural parameters of the energy

potential one can obtain all of the standard free energy potentials. In this case the one parameter
Legendre family of energy derived potentials Φ𝑎 are given by

Φ1 = L𝐸1𝐸 = 𝐸 − 𝐼1𝐸
1, Φ2 = L𝐸2𝐸 = 𝐸 − 𝐼2𝐸

2, · · · Φ𝑛 = L𝐸𝑛𝐸 = 𝐸 − 𝐼𝑛𝐸
𝑛. (3)

The two parameter Legendre family of energy derived potentials Φ𝑎𝑏, 𝑎 ≠ 𝑏, are given by

Φ12 = L𝐸1,𝐸2𝐸 = 𝐸 − 𝐼1𝐸
1 − 𝐼2𝐸

2, (4)
Φ13 = L𝐸1,𝐸3𝐸 = 𝐸 − 𝐼1𝐸

1 − 𝐼3𝐸
3, (5)

... (6)
Φ𝑛−1,𝑛 = L𝐸𝑛−1,𝐸𝑛𝐸 = 𝐸 − 𝐼𝑛−1𝐸

𝑛−1 − 𝐼𝑛𝐸
𝑛. (7)

Of course, one can continue further by defining more potentials along three or more variables. At
the end the Legendre transformation along all the extensive variable simultaneously leads to the
trivial potential Φ1,2,...,𝑛 = 0, which is due to the Euler homogeneity relation

𝐸 =

𝑛∑︁
𝑎=1

𝐼𝑎𝐸
𝑎 . (8)

However, the potential Φ1,2,...,𝑛 may not be trivial if the energy of the system is a quasi-
homogeneous function of degree 𝑟 and type (𝑟1, ..., 𝑟𝑛) under dilatations by a scale factor 𝜆 > 0,
i.e.

𝑟𝐸 =

𝑛∑︁
𝑎=1

𝑟𝑎 𝐼𝑎𝐸
𝑎 . (9)

This relation reflects the Euler theorem for quasi-homogeneous functions, where 𝐼𝑎 are given by
the equations of state (2).
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The situation is similar if one works in the entropy representation. In this case, choosing the
entropy 𝑆 as a thermodynamic potential depending on its natural parameters (𝑆1, 𝑆2, ..., 𝑆𝑛) one
can write the first law of thermodynamics in the form

𝑑𝑆 =
1
𝑇
𝑑𝐸 −

𝑛−1∑︁
𝑖=1

𝑋𝑖

𝑇
𝑑𝑌 𝑖 =

𝑛∑︁
𝑎=1

𝜆𝑎𝑆
𝑎, (10)

where ®𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑛) are the thermodynamically conjugated parameters of ®𝑆 = (𝑆1, 𝑆2, ..., 𝑆𝑛)𝑇 .
The equations of state follow naturally by

𝜆𝑎 =
𝜕𝑆( ®𝑆)
𝜕𝑆𝑎

����
𝑆1,...,�̂�𝑎 ,...,𝑆𝑛

, (11)

A Legendre transformation of the entropy potential along one or several of its natural parameters
is used to obtain the entropy derived family of potentials. The latter are known by several names:
Massieu-Planck potentials, free entropies or free information. It is important to note that entropy
is not a Legendre transformation of the energy and thus entropy representation and its derived
potentials are in general different from the energy representation and its derived potentials.

It is a fact that different potentials (representations) correspond to different constraints to which
the system may be subjected. The thermodynamic properties of the system can be fully described
once the fundamental relation in the chosen representation has been established. Therefore, one
has to be able to transfer all the relevant properties between representations. This is, however,
a non-trivial task. An example is given in thermodynamic information geometry [1–11], where
Legendre non-invariant thermodynamic metrics lead to radically different physics when changing
the potentials, while Legendre invariant ones have infinitely many conformal factors to choose from.

An important related problem is how to transfer thermodynamic information on the level of
the Hessians of thermodynamic potentials either between Legendre related potentials or the same
potential defined on different manifolds. The latter is due to the fact that any change of variables
in a given potential induces a curved thermodynamic manifold and the new induced Hessian is
radically different from the original one. Later in this paper we show that the relation between
the original and the induced Hessian is given by a generalized pullback/pushforward formula
including the Jacobians of the transformation and also terms involving the components of the
induced metric on the new manifold. This relation can be used to transfer the conditions for global
thermodynamic stability from one representation to another. Furthermore, because Hessians can
be used to define thermodynamic metrics, we can relate the generalized pullback/pushforward by
the components of the Weinhold metric [1] in energy representation and the Ruppeiner metric [2]in
entropy representation.

The goal of this work is to present the theory of thermodynamic stability from information-
theoretic perspective, while keeping it as simple as possible due to its practical importance. The
structure of the paper is the following. In Section 2 we present the necessary and sufficient
conditions for global thermodynamic stability in energy and entropy representations. In Section 3
we find novel relations between Hessians and Hessian metrics defined on different thermodynamic
manifolds. We also show the equivalence of our approach to the Nambu bracket formalism. In
Section 4 we present our remarks on the concept of local thermodynamic stability and its relation
to global one. Finally, in Section 5 we give a brief summary of our results.
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2. Necessary and sufficient conditions for global thermodynamic equilibrium

A given system is in thermodynamic equilibrium if its state variables do not spontaneously
change over considerably long period of time. According to thermodynamics [13–16] the necessary,
but not sufficient, conditions for establishing thermodynamic equilibrium between the system and
its surroundings in the energy representation are given by the equalities of the intensive parameters
𝐼𝑎 = 𝐼∗𝑎, where 𝐼∗𝑎 are the intensive parameters of the surroundings. These parameters include
temperature, pressure, chemical potentials etc. The conditions can easily be derived by the condition
on the first variation of the internal energy of the system during a virtual process:

𝛿 (1)𝐸 ( ®𝐸) −
∑︁
𝑎

𝐼∗𝑎𝛿𝐸
𝑎 =

∑︁
𝑎

[(
𝜕𝐸

𝜕𝐸𝑎

����
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛

− 𝐼∗𝑎

)
𝛿𝐸𝑎

]
= 0. (12)

The space of possible states of equilibrium (compatible with constraints and initial conditions) is
called the space of virtual states. Due to the first law in equilibrium one has (𝜕𝐸/𝜕𝐸𝑎) = 𝐼𝑎 and
the necessary conditions for equilibrium become

𝐼𝑎 = 𝐼∗𝑎 = 𝑐𝑜𝑛𝑡𝑠, (13)

Equivalently one can work with the variation of the entropy 𝛿 (1)𝑆( ®𝑆).
On the other hand, the sufficient conditions for global thermodynamic equilibrium, and thus

global thermodynamic stability, can be derived by the sign of the second variation of the energy or
the entropy consistent with the second law of thermodynamics.

Considering the energy as a potential the second variation 𝛿 (2)𝐸 = 𝛿 ®𝐸𝑇 .Ĥ (𝐸 ) ( ®𝐸).𝛿 ®𝐸 > 0
should be positive due to the fact that in equilibrium the energy of the system assumes its minimum.
Here Ĥ (𝐸 ) is the symmetric 𝑛 × 𝑛 Hessian matrix of the energy given by

H (𝐸 )
𝑎𝑏

( ®𝐸) = 𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

����
𝐸1,...,�̂�𝑎 ,...,�̂�𝑏 ,...,𝐸𝑛

, 𝑎, 𝑏 = 1, 2, ..., 𝑛. (14)

The inequality 𝛿 (2)𝐸 > 0 defines Ĥ (𝐸 ) as a positive definite quadratic form. This means that for
global equilibrium it is sufficient that all eigenvalues 𝜀𝑎 > 0, 𝑎 = 1, ..., 𝑛, of the Hessian of the
energy be strictly positive.

On the other hand, the second variation 𝛿 (2)𝑆 = 𝛿 ®𝑆𝑇 .Ĥ (𝑆) ( ®𝑆).𝛿 ®𝑆 < 0 should be negative due
to the fact that in equilibrium the entropy of the system settles at its maximum. The inequality
𝛿 (2)𝑆 < 0 defines 𝛿 (2)𝑆 as a negative definite quadratic form. This means that for global equilibrium
it is sufficient that all eigenvalues 𝑠𝑎 < 0, 𝑎 = 1, ..., 𝑛, of the Hessian of the entropy be strictly
negative.

For many-parametric systems the eigenvalues of the corresponding Hessians may become
too complicated for analytical treatment. In this situation one can use the Sylvester criterion
for positive/negative definiteness of the Hessians to study thermodynamic stability. In energy
representation the energy is strictly global convex, thus the Hessian of the energy is positive definite
quadratic form. In this case Sylvester’s criterion states that all the principal minors Δ𝑘 > 0 of
the Hessian of the energy must be strictly positive. In entropy representation this criterion has
alternating signs (−1)𝑘Δ𝑘 > 0 due to the fact that entropy is globally concave function.
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Let us show what this means for 𝑛 = 3 parametric thermodynamics in the energy representation.
In this case the energy 𝐸 is a function of its natural parameters (𝐸1, 𝐸2, ..., 𝐸𝑛) and its Hessian
Ĥ (𝐸 ) is the following 3 × 3 symmetric matrix

Ĥ (𝐸 ) ( ®𝐸) =
©«

𝜕2𝐸
(𝜕𝐸1 )2

��
𝐸2,𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
(𝜕𝐸2 )2

��
𝐸1,𝐸3

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
(𝜕𝐸3 )2

��
𝐸1,𝐸2

ª®®®®¬
. (15)

According to Sylvester’s criterion for thermodynamic stability the first level principal minors
of Ĥ (𝐸 ) must be strictly positive:

Δ
(2,3)
1 =

𝜕2𝐸

(𝜕𝐸1)2

����
𝐸2,𝐸3

> 0, Δ
(1,3)
1 =

𝜕2𝐸

(𝜕𝐸2)2

����
𝐸1,𝐸3

> 0, Δ
(1,2)
1 =

𝜕2𝐸

(𝜕𝐸3)2

����
𝐸1,𝐸2

> 0. (16)

These conditions correspond to the fact that energy is a convex function along its natural parameters.
The upper indices in Δ

(𝑖, 𝑗 )
1 indicate that the 𝑖𝑡ℎ row and column and the 𝑗 𝑡ℎ row and column of the

Hessian have been deleted. These condition have to be accompanied with the positiveness of the
determinants of the second level principal minors:

Δ
(3)
2 =

������
𝜕2𝐸

(𝜕𝐸1 )2

��
𝐸2,𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
(𝜕𝐸2 )2

��
𝐸1,𝐸3

������ > 0, (17)

Δ
(2)
2 =

������
𝜕2𝐸

(𝜕𝐸1 )2

��
𝐸2,𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
(𝜕𝐸3 )2

��
𝐸1,𝐸2

������ > 0, (18)

Δ
(1)
2 =

������
𝜕2𝐸

(𝜕𝐸2 )2

��
𝐸1,𝐸3

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
(𝜕𝐸3 )2

��
𝐸2,𝐸3

������ > 0. (19)

The upper index in Δ
(𝑖)
2 indicates that the 𝑖𝑡ℎ row and column of the Hessian have been removed.

The final part of the Sylvester criterion is a condition on the determinant of the Hessian itself:

Δ3 = det(Ĥ (𝐸 ) ) =

���������
𝜕2𝐸

(𝜕𝐸1 )2

��
𝐸2,𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
𝜕𝐸1𝜕𝐸2

��
𝐸3

𝜕2𝐸
(𝜕𝐸2 )2

��
𝐸1,𝐸3

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
𝜕𝐸1𝜕𝐸3

��
𝐸2

𝜕2𝐸
𝜕𝐸2𝜕𝐸3

��
𝐸1

𝜕2𝐸
(𝜕𝐸3 )2

��
𝐸1,𝐸2

��������� > 0. (20)

For 𝑛 = 3 system in the entropy representation the Sylvester criterion yields:

Δ
(2,3)
1 =

𝜕2𝑆

(𝜕𝑆1)2

����
𝑆2,𝑆3

< 0, Δ
(1,3)
1 =

𝜕2𝑆

(𝜕𝑆2)2

����
𝑆1,𝑆3

< 0, Δ
(1,2)
1 =

𝜕2𝑆

(𝜕𝑆3)2

����
𝑆1,𝑆2

< 0, (21)

which just reflects the fact that entropy is a concave function along its natural parameters. The other
two parts of the Sylvester criterion can be written for short in the following way:

Δ
(3)
2 > 0, Δ

(2)
2 > 0, Δ

(1)
2 > 0, Δ3 = det(Ĥ (𝑆) ) < 0. (22)
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If one considers different thermodynamic potentials (representations) one has to know how to
transfer these conditions to the new energy or entropy derived potentials. This is a non trivial task
involving several ingredients such as the properties of the Legendre transformation, the induced
metric on the new curved thermodynamic manifold and the use of Maxwell relations for the
particular system under consideration. In the following section we show how to construct the
second ingredient, while the full construction we leave for a future work.

3. Change of variables, Nambu brackets and induced Hessians

Let us recall that ®𝐸 = (𝐸1, 𝐸2, ..., 𝐸𝑛) define the natural parameters of the energy and we can
think of them as coordinates in an 𝑛-dimensional flat thermodynamic space – the 𝐸-space. The
Hessian of the energy in this space is directly related to the Weinhold metric [1]

𝑔
(𝑊 )
𝑎𝑏

( ®𝐸) ≡ H (𝐸 )
𝑎𝑏

( ®𝐸) = 𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

����
𝐸1,...,�̂�𝑎 ,...,�̂�𝑏 ,...,𝐸𝑛

, 𝑎, 𝑏 = 1, 2, ..., 𝑛. (23)

We can make a change of the coordinates to a new set of coordinates ®𝑒 = (𝑒1, 𝑒2, ..., 𝑒𝑛). The
new coordinates may not all be extensive and most certainly are not all energy natural. They span
a new induced curved space – the 𝑒-space, where the induced Hessian of the energy is given by

𝑔
(𝑊 )
𝛼𝛽

( ®𝑒) ≡ H (𝐸 )
𝛼𝛽

( ®𝑒) = 𝜕2𝐸 ( ®𝑒)
𝜕𝑒𝛼𝜕𝑒𝛽

����
𝑒1,...,�̂�𝛼 ,...,�̂�𝛽 ,...,𝑒𝑛

, 𝛼, 𝛽 = 1, 2, ..., 𝑛. (24)

One can check that the relation between the two Hessians is given by the following generalized
pushforward from 𝑒-space to 𝐸-space:

𝑔
(𝑊 )
𝑎𝑏

( ®𝐸) = 𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

=
∑︁
𝛼,𝛽

𝜕𝑒𝛼

𝜕𝐸𝑎

(
𝜕2𝐸 ( ®𝑒)
𝜕𝑒𝛼𝜕𝑒𝛽

− Γ
𝛾

𝛼𝛽
( ®𝑒) 𝜕𝐸 ( ®𝑒)

𝜕𝑒𝛾

)
𝜕𝑒𝛽

𝜕𝐸𝑏
. (25)

The inverse of this formula is given by the generalized pullback from 𝐸-space to 𝑒-space:

𝑔
(𝑊 )
𝛼𝛽

( ®𝑒) = 𝜕2𝐸 ( ®𝑒)
𝜕𝑒𝛼𝜕𝑒𝛽

=
∑︁
𝑎,𝑏

(
𝜕𝑒𝛼

𝜕𝐸𝑎

)−1 (
𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

) (
𝜕𝑒𝛽

𝜕𝐸𝑏

)−1
+ Γ

𝛾

𝛼𝛽
( ®𝑒) 𝜕𝐸 ( ®𝑒)

𝜕𝑒𝛾
, (26)

where Γ
𝛾

𝛼𝛽
( ®𝑒) are the Christoffel symbols on the 𝑒-manifold:

Γ
𝛾

𝛼𝛽
( ®𝑒) =

∑︁
𝛿

1
2
ℎ𝛾𝛿 (𝜕𝛽ℎ𝛿𝛼 + 𝜕𝛼ℎ𝛿𝛽 − 𝜕𝛿ℎ𝛼𝛽), (27)

and ℎ𝛼𝛽 ( ®𝑒) is the actual induced metric on the 𝑒-manifold,

ℎ𝛼𝛽 ( ®𝑒) =
∑︁
𝑎,𝑏

𝛿𝑎𝑏
𝜕𝐸𝑎

𝜕𝑒𝛼
𝜕𝐸𝑏

𝜕𝑒𝛽
. (28)

Here 𝛿𝑎𝑏 is the 𝑛-dimensional flat Euclidean metric. For simplicity in the expressions above we
have suppressed the lower subscripts of the partial derivatives showing the fixed parameters.
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One can think of Eq. (25) as a direct way to calculate components of the Hessian of the energy
(the Weinhold metric) in 𝐸-space if one knows the components of the Hessian in 𝑒-space, while
Eq. (26) does the opposite. These expressions give a new representation of the Weinhold metric in
any thermodynamic coordinates.

Furthermore, one can use Legendre transformation of the energy to express Eq. (25) in terms
of the Hessians of other energy derived potentials. For example, for the Φ𝑘 potential, one finds

𝜕2

𝜕𝐸𝑎𝜕𝐸𝑏

(
Φ𝑘 ( ®𝐸) + 𝐼𝑘𝐸

𝑘
)
=
∑︁
𝛼,𝛽

𝜕𝑒𝛼

𝜕𝐸𝑎

(
𝜕2

𝜕𝑒𝛼𝜕𝑒𝛽

(
Φ𝑘 ( ®𝑒) + 𝐼𝑘𝐸

𝑘
)
− Γ

𝛾

𝛼𝛽
( ®𝑒) 𝜕𝐸 ( ®𝑒)

𝜕𝑒𝛾

)
𝜕𝑒𝛽

𝜕𝐸𝑏
. (29)

What is the relation of (25) and (26) to the Nambu bracket formalism? To answer this question
one has to refer to the first law of thermodynamics in 𝐸-space. Let us recall that the equations of
state in the energy representation looks like

𝐼𝑎 =
𝜕𝐸

𝜕𝐸𝑎

����
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛

. (30)

Using this relation one can turn the components of the Hessian into first order partial derivatives
over the intensive parameters:

𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

����
𝐸1,...,�̂�𝑎 ,...,�̂�𝑏 ,...,𝐸𝑛

=


𝜕𝐼𝑏 ( ®𝐸 )
𝜕𝐸𝑎

��
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛 ,

𝜕𝐼𝑎 ( ®𝐸 )
𝜕𝐸𝑏

��
𝐸1,...,�̂�𝑏 ,...,𝐸𝑛 .

(31)

The two first order derivative expressions above are different but equivalent representation of the
components of the Hessian in equilibrium. The calculations of these derivatives in 𝑒-space is
achieved by the appropriate Nambu brackets, i.e.

𝜕𝐼𝑏 ( ®𝐸)
𝜕𝐸𝑎

����
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛

=
{𝐼𝑏, 𝐸1, ..., �̂�𝑎, ..., 𝐸𝑛}𝑒1,𝑒2,...,𝑒𝑛

{𝐸𝑎, 𝐸1, ..., �̂�𝑎, ..., 𝐸𝑛}𝑒1,𝑒2,...,𝑒𝑛
, (32)

𝜕𝐼𝑎 ( ®𝐸)
𝜕𝐸𝑏

����
𝐸1,...,�̂�𝑏 ,...,𝐸𝑛

=
{𝐼𝑎, 𝐸1, ..., �̂�𝑏, ..., 𝐸𝑛}𝑒1,𝑒2,...,𝑒𝑛

{𝐸𝑏, 𝐸1, ..., �̂�𝑏, ..., 𝐸𝑛}𝑒1,𝑒2,...,𝑒𝑛
. (33)

Nambu brackets are the generalization of the Poisson brackets for three or more variables, i.e.

{ 𝑓 , 𝑥1, ..., 𝑥𝑛−1}𝑦1,𝑦2,...,𝑦𝑛 =

������������

𝜕 𝑓

𝜕𝑦1

��
𝑦2,𝑦3,...,𝑦𝑛

𝜕 𝑓

𝜕𝑦2

��
𝑦1,𝑦3,...,𝑦𝑛

· · · 𝜕 𝑓

𝜕𝑦𝑛

��
𝑦1,𝑦2,..., �̂�𝑛

𝜕𝑥1

𝜕𝑦1

��
𝑦2,𝑦3,...,𝑦𝑛

𝜕𝑥1

𝜕𝑦2

��
𝑦1,𝑦3,...,𝑦𝑛

· · · 𝜕𝑥1

𝜕𝑦𝑛

��
𝑦1,𝑦2,..., �̂�𝑛

...
...

...

𝜕𝑥𝑛−1

𝜕𝑦1

��
𝑦2,𝑦3,...,𝑦𝑛

𝜕𝑥𝑛−1

𝜕𝑦2

��
𝑦1,𝑦3,...,𝑦𝑛

· · · 𝜕𝑥𝑛−1

𝜕𝑦𝑛

��
𝑦1,𝑦2,..., �̂�𝑛

������������
. (34)

Equations (31), (32) and (32) allow us to relate the generalized pushforward for the Weinhold
metric to the Nambu brackets in the following way

𝑔
(𝑊 )
𝑎𝑏

( ®𝐸) = 𝜕2𝐸 ( ®𝐸)
𝜕𝐸𝑎𝜕𝐸𝑏

=
∑︁
𝛼,𝛽

𝜕𝑒𝛼

𝜕𝐸𝑎

(
𝜕2𝐸 ( ®𝑒)
𝜕𝑒𝛼𝜕𝑒𝛽

− Γ
𝛾

𝛼𝛽
( ®𝑒) 𝜕𝐸 ( ®𝑒)

𝜕𝑒𝛾

)
𝜕𝑒𝛽

𝜕𝐸𝑏

=


𝜕𝐼𝑏 ( ®𝐸 )
𝜕𝐸𝑎

��
𝐸1,...,�̂�𝑎 ,...,𝐸𝑛 =

{𝐼𝑏 ,𝐸1,...,�̂�𝑎 ,...,𝐸𝑛 }
𝑒1 ,𝑒2 ,...,𝑒𝑛

{𝐸𝑎 ,𝐸1,...,�̂�𝑎 ,...,𝐸𝑛 }
𝑒1 ,𝑒2 ,...,𝑒𝑛

,

𝜕𝐼𝑎 ( ®𝐸 )
𝜕𝐸𝑏

��
𝐸1,...,�̂�𝑏 ,...,𝐸𝑛 =

{𝐼𝑎 ,𝐸1,...,�̂�𝑏 ,...,𝐸𝑛 }
𝑒1 ,𝑒2 ,...,𝑒𝑛

{𝐸𝑏 ,𝐸1,...,�̂�𝑏 ,...,𝐸𝑛 }
𝑒1 ,𝑒2 ,...,𝑒𝑛

.

(35)

7



P
o
S
(
B
P
U
1
1
)
0
5
6

Thermodynamic Equilibrium, Nambu Brackets and Induced Hessians Tsvetan Vetsov

All the properties we have investigated above are also valid for the Ruppeiner metric and the
Hessian of the entropy:

𝑔
(𝑅)
𝑎𝑏

( ®𝑆) ≡ H (𝑆)
𝑎𝑏

( ®𝑆) = 𝜕2𝑆( ®𝑆)
𝜕𝑆𝑎𝜕𝑆𝑏

����
𝑆1,...,�̂�𝑎 ,...,�̂�𝑏 ,...,𝑆𝑛

, 𝑎, 𝑏 = 1, 2, ..., 𝑛. (36)

Therefore, one has two different ways of relating thermodynamic Hessian metric data between
arbitrary thermodynamic manifolds1 (representations).

4. Heat capacities and local thermodynamic equilibrium

The physical interpretation of the components of the Hessian is related to the thermal and
caloric thermodynamic coefficients of the system. For example, for three parametric system, there
are in total of 12 such coefficients but only three of them are sufficient to fully describe the system.
One traditionally chooses the heat capacities, which consequently can be used to define the local
thermodynamic stability of the system.

The general definition of a given heat capacity 𝐶𝑥1,𝑥2,...,𝑥𝑛−1 , at fixed set of thermodynamic
parameters (𝑥1, 𝑥2, ..., 𝑥𝑛−1), is given by the derivative of the entropy in a given thermodynamic
space (𝑦1, 𝑦2, ..., 𝑦𝑛) of equilibrium states, namely

𝐶𝑥1,𝑥2,...,𝑥𝑛−1 (𝑦1, 𝑦2, ..., 𝑦𝑛) = 𝑇
𝜕𝑆

𝜕𝑇

����
𝑥1,𝑥2,...,𝑥𝑛−1

= 𝑇
{𝑆, 𝑥1, 𝑥2, ..., 𝑥𝑛−1}𝑦1,𝑦2,...,𝑦𝑛

{𝑇, 𝑥1, 𝑥2, ..., 𝑥𝑛−1}𝑦1,𝑦2,...,𝑦𝑛
. (37)

The set of constant parameters 𝑥1, 𝑥2, ..., 𝑥𝑛−1 could be a mix of all kinds of intensive and extensive
variables. Additionally, all the relevant state quantities become functions of the independent
parameters 𝑦1, 𝑦2, ..., 𝑦𝑛. In this case we say that (𝑦1, ..., 𝑦𝑛) define the coordinates in our space of
equilibrium states.

In thermodynamics local equilibrium can be defined by quasi equilibrium between different
parts of the system, where some small gradients of the parameters are still allowed. If one has
global equilibrium one also has a local one. The reverse is not true. Even if one of the local heat
capacities fails to be positive there cannot be a global equilibrium, but local one can still exists with
respect to the other heat capacities.

The identification of local stability with the positivity of the heat capacity is related again to
the components of the Hessian, which is most evident for simple systems such as the ideal gas or
Van der Waals gas (see for example [13–16]). Therefore, one can insist that the conditions for local
thermodynamic stability is 𝐶𝑥1,𝑥2,...,𝑥𝑛−1 > 0.

Heat capacities are also important for identifying the critical points of phase transitions in
the system. Specifically, if a given heat capacity diverges or changes sign this would signal the
presence of a phase transition and the breakdown of the equilibrium thermodynamic description
of the system. In this case, as pointed out by Ruppeiner [2, 12], an alternative way of identifying
such critical behaviour of the system is given by the divergences of the thermodynamic curvature

1Although the change of variables is arbitrary we choose the original embedding space (the 𝐸-space) to be flat
Euclidean space. This is the simplest choice for the energy potential depending on its natural coordinates. However,
there is no obvious reason why this should be true and one can choose an arbitrary initial metric.
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induced by the Hessian metrics. This result in thermodynamic geometry is more robust than heat
capacity’s method, because it relies on invariant geometric structures and does not refer to any
ordering parameters.

5. Epilogue

The theory of thermodynamic stability is one of the central subjects in thermodynamics with
great practical importance. Hence it is imperative that the correct generic necessary and sufficient
conditions for local and global thermodynamic stability be identified.

Here we have done this in a manner suitable for the framework of thermodynamic information
geometry. In our pursue of generalizing these conditions to an arbitrary thermodynamic potential
and arbitrary thermodynamic space we have uncovered novel relations involving thermodynamic
information metrics such as the Weinhold and Ruppeiner metrics. These relations are one of the
three key ingredients to describe the information transfer of thermodynamic data, including stability
conditions, between different representations. The full analysis would also require the properties of
the Legendre transformation and the set of Maxwell relations in a given representation. We leave
this for a future investigation.
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