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The exotic atom of muonic hydrogen 𝑝𝜇 has a relatively long lifetime allowing for precise
measurements of its spectra. The hyperfine splitting of its ground-state Δ𝐸hfs ∼ 0.182 eV is in
the infra-red optical range that makes it convenient to be studied with laser spectroscopy. Several
experiments for the determination of the proton Zemach radius from measurements of Δ𝐸hfs, are
currently underway. One of them is the FAMU experiment, aiming to determine the Zemach
radius of the proton by studying the time distribution of the characteristic X-rays signaling the
laser-stimulated spin-flip of the 𝑝𝜇 atoms. As the accurate knowledge of the collision energy
dependence of the muon transfer rate from the ground-state of 𝑝𝜇 to oxygen, 𝜆pO (𝐸), is crucial
for the efficiency of the FAMU method, we use the available data from recent measurements of
the muon transfer rate at temperatures in the range 70 K<𝑇<336 K in fully thermalized gas to
obtain reliable estimates of 𝜆pO (𝐸) by fitting the experimental data with various trial functions.
The advantages and disadvantages of each type of trial functions are discussed in detail.
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1. Introduction

The light exotic atoms posses unique characteristics allowing them to be used as alternative to
the standard atoms in studying the basic properties of matter [1–4]. The most precise determinations
of the proton charge radius were carried out by spectroscopy measurements of muonic atoms [1, 5].
That is how the so-called "proton radius puzzle" arose when R. Pohl et al., studied the Lamb shift in
muonic hydrogen and discovered that the proton radius they measured was smaller than previously
thought [1]. In the following years new experiments investigated this discrepancy [6, 7]. Although
this question is now almost closed, the uncertainties in other fundamental characteristics, such as
the proton Zemach radius remain an open problem.

The FAMU project is dedicated to determine the proton Zemach radius, a convolution of
the magnetic dipole and electric charge distribution in the proton [4]. It will be extracted by
measurements of the resonance frequency of the singlet to triplet transition in the ground state
of 𝑝𝜇 stimulated by a laser, tunable around the resonance frequency Δ𝐸hfs/ℎ ∼ 44 THz [4, 8].
This transition will be recognized by the response of the time distribution of the characteristic
muonic oxygen X-rays, which in turn is sensitive to the kinetic energy dependence of the rate of
muon transfer from muonic hydrogen to muonic oxgen [9–11], thus it is imperative to have an
accurate knowledge of the energy dependence of the muon transfer reaction, 𝜆pO(𝐸). In this work,
we investigate several functional dependencies 𝜆pO(𝐸), obtained by fitting experimental data to
different test functions. The initial data points are taken from the recent FAMU measurements of
the muon transfer rate’s temperature dependence for several temperatures in the range 70 K<𝑇<336
K [12]. Our computations show that, when the fitting functions are constrained by a few physical
requirements, the resulting functions describe the behavior of 𝜆pO(𝐸) quite accurately.

The work is organized as follows. In Sec. 2, a brief summary of the FAMU experiment is
given. The method used to extract the Zemach radius from mesurements of the hyperfine splitting
in its ground state is explained in Sec. 2.1. Next, we present the results from the latest FAMU
measurements of the temperature dependence of the transfer rate of muons, used as input data latter
in this paper 2.2. In Sec. 3.1 several fits when we do not place any requirements on the type of
functions are studied. Next, in Sec. 3.2 various constrained fitting functions for 𝜆pO(𝐸) are reviewed
and their advantages and disadvantages are assessed. The results from this work are summarized
in Sec. 4.

2. The FAMU experiment

2.1 Summary of the experimental method

The FAMU project is dedicated to determine with high accuracy the proton Zemach radius and
in this way to find an independent solution to the "proton size puzzle". The method consists of a
series of steps as shown on Fig. 1:

1. The 𝑝𝜇’s in 1s(↑↓) state propagate in a H2 and O2 gas mixture.
2. Part of the 𝑝𝜇’s are excited to the 1s(↑↑) state with laser pulse.
3. In collisions with H2 the 𝑝𝜇’s are de-excited back to (↑↓) state. These atoms carry away

nearly 2/3 of the released energy Ehfs(∼ 0.12 eV) as additional kinetic energy.
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4. In collisions of 𝑝𝜇 with 𝑂2 the muon is transferred to an excited state of muonic oxygen
𝜇𝑂∗. The rate of muon transfer to oxygen from accelerated 𝑝𝜇’s exceeds the rate from thermal
𝑝𝜇’s.

5. The muon transfer to oxygen is signaled by the emission of characteristic X-rays during
relaxation of 𝜇𝑂∗.

µp 1 s

H 2

O 2

O 2

µO *

µO *

s = h i ,  E ~ k T

s = h i ,  E ~ k T + 2 / 3  E h f s
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Figure 1: (Color online) The method used in FAMU experiment for determination of the proton Zemach
radius by studying the transfer rate of 𝜇− from hydrogen to oxygen in the presence and absence of a laser
field with resonant for the ground state otho-para transition frequency.

The experimental observable is the time distribution characteristic of X-rays (see Fig. 2). The
signal is the time distribution difference in the X-rays with and without laser pulse. The more
spin-flipped 𝜇𝑝’s, the stronger the signal. It reaches maximum at laser frequency in resonance with
the hyperfine splitting Δ𝐸hfs. The fast muon transfer from accelerated 𝜇𝑝 perturbs the exponential
background from thermal 𝜇𝑝’s.
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Figure 2: (Color online) Time distribution of the characteristic X-rays from the muonic oxygen. The signal
represents an excess in X-rays indicating the increase in the characteristic radiation when the infrared laser is
tuned to the resonance frequency Ehfs.

It can be seen that the efficiency of the method is determined by the collision energy dependence
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𝜆pO(𝐸) of the rate of muon transfer (𝑝𝜇)1s +𝑂 → (𝑂𝜇)∗ + 𝑝. There are indications of a sharp raise
of 𝜆pO(𝐸) at thermal and near epithermal energies in hydrogen-oxygen admixture [9–11]. However,
more accurate quantitative experimental verification is needed.

2.2 Temperature dependence of the muon transfer rate

Recently, the FAMU collaboration measured the temperature dependence ΛpO(𝑇) of the muon
transfer rate for several temperatures in the range 70 K<𝑇<336 K in fully thermalized gas [12]. The
results for ΛpO(𝑇), with the experimental uncertainties 𝛿Λ are given in Table 1.

However, what we actually need is the transition rate as a function of 𝜇𝑝’s kinetic energy
𝜆pO(E). Let 𝑓 (𝐸 ;𝑇) is the energy distribution of 𝜇𝑝. In thermal equilibrium this is the Maxwell-
Boltzmann distribution

𝑓 (𝐸 ;𝑇) = 𝑓MB(𝐸 ;𝑇) = 2
√
𝜋(𝑘𝑇)3/2

√
𝐸 exp(−𝐸/𝑘𝑇). (1)

Then, the temperature dependence ΛpO(𝑇) of the rate of muon transfer can be written as:

ΛpO(𝑇) =
∫

𝑑𝐸 𝜆pO(𝐸) 𝑓 (𝐸 ;𝑇) (2)

Since, we know the values of ΛpO(𝑇) for only few discrete points, the inverse Laplace transform is

𝑘 1 2 3 4 5 6 7 8 9 10
𝑇𝑘 70 80 104 153 201 240 272 300 323 336
Λ𝑘 2.67 2.96 3.07 5.20 6.48 8.03 8.18 8.79 8.88 9.37
𝛿Λ𝑘 0.51 0.38 0.30 0.34 0.35 0.38 0.41 0.43 0.91 1.07

Table 1: Temperature dependence of the muon transfer rate from hydrogen to oxygen ΛpO (𝑇) for 10
temperatures in the range 70 K<𝑇<336 K in fully thermalized gas measured by the FAMU collaboration
[12]. The values shown are normalized to liquid hydrogen, in units 1010 s−1.

inapplicable for deriving the energy dependence of the muon transfer rate 𝜆pO(𝐸). Our approach in
this work will be to probe various trial functions 𝜆pO(𝐸 ; {𝑝}), for which ΛpO(𝑇 ; {𝑝}), calculated
with Eq. (2) gives best fit of the data.

3. Searching for functional dependence of the transfer rate

3.1 Fits with unconstrained test functions

In this chapter we fit the experimental data for ΛpO(𝑇) to few-parameter functions and estimate
how well the corresponding 𝜆pO(𝐸) describe the behavior of muon transfer rate in the energy range
of interest for the FAMU experiment. Here, we will not constrain the fitting expressions and we
will investigate their goodness of fit. Six test functions are studied:

(𝑎) 𝑎0 + 𝑎1
√
𝐸 ; (𝑏) 𝑎0 + 𝑎1𝐸 ;

(𝑐) 𝑎0𝐸 + 𝑎1𝐸
3; (𝑑) 𝑎0+𝑎1𝐸

2+𝑎2𝐸
3; (3)

(𝑒) (𝑎0 + 𝑎1𝐸 + 𝑎2𝐸
2)𝑒−𝐸/𝑒1 ; ( 𝑓 ) 𝑎0 + 𝑎1𝐸 + 𝑎2𝐸

2.
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From Fig. 3(left), in can be seen that all expressions fit the data very well. However, outside the
region for which data points are available, the fits diverge.Some of the curves show unphysical
negative values for the energy dependence of the muon transfer. The above results show that the
correct behavior of 𝜆pO(𝐸 ; {𝑝}) can not be determined unambiguously with only ten data-points
and standard fitting procedure. As a conclusion: the unconstrained test functions reproduce the
data well (low chi-squared 𝜒2), but diverge outside the range of investigated temperatures, and lead
to unphysical values and wrong asymptotics.
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Figure 3: (Color online) The results of fitting the FAMU data for ΛpO (𝑇) with the functions given by
Eq. (3)(left). On the right picture are presented the functions for 𝜆pO (𝐸 ; {𝑝}), corresponding to ΛpO (𝑇) with
the same letter.

3.2 Constrained experimental data fits

The above-mentioned issue could be solved if we impose certain physical constraints on the
fitting functions:

C1 - Non-negativity: 𝜆(𝐸 ; {𝑝}) ≥ 0 for all 𝐸 ≥ 0. Out of the examples on Fig. 3 this excludes
cases (c), (d), (e), and (f).

C2 - Large E asymptotics: 𝑑𝜆(𝐸 ; {𝑝})/𝑑𝐸 ≤ 0 for 𝐸 > 𝜀𝜇 = 𝑚𝜇𝑐
2𝛼2 ∼ 5 keV.

C3 - Agreement with Wigner threshold law: 𝜆0 = 𝜆(0; {𝑝}) > 0,
0 ≤ 𝑑𝜆(𝐸 ; {𝑝})/𝑑𝐸 ≪ 𝜆0/𝐸0 for 𝐸 < 𝐸0, 𝐸0 ∼ 10−3 eV

C4 - Stability: No qualitative changes if fitting data subsets.

We investigate a few types of functions, from simple to more complicated ones, and for each
we analyze their advantages and disadvantages in regarding the reliability of resulting expression
for 𝜆pO(𝐸).

3.2.1 Truncated polynomials

The best fit with the polynomial function

𝜆(𝐸)=max(𝑝0+𝑝1𝐸+𝑝2𝐸
2, 0) (4)
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is shown on Fig. 4 (Left). On the right picture is presented the corresponding function 𝜆pO(𝐸)
computed by means of Eq. (2). The shadowed area is the mean prediction band (MPB) for 95%
confidence level.
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Figure 4: (Left) Fit of the experimental data for ΛpO (𝑇) with the truncated polynomial given in Eq. (4).
The experimental uncertainties are presented too. (Right) The corresponding curve for 𝜆pO (𝐸) with its
confidence band shown in gray.

This function satisfies conditions C1 and C2. However, the confidence band is very wide and
this fit cannot give good predictions for the energy dependence of the muon transfer rate from
hydrogen to oxygen.

3.2.2 Cubic spline test functions

We have investigated two types of cubic splines. In the first case the experimental data is fitted
by 3-node splines. As seen on Fig. 5, the MPB for 95% confidence level for both cases is at fairly
acceptable level. The functions 𝜆(𝐸) are positive in the shown energy interval, and condition C2 is
satisfied too.
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Figure 5: Two optimal fits of the available data for the temperature dependence of the muon transfer rate
with 3-node cubic spline.

We made fits with 5-node cubic spline too. However, due to the low number of data points
and relatively high number of fitting parameters, the results are not so promising. The confidence
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bands are narrower, but the energy dependence of the 𝜇− transfer rate becomes negative at some
point < 0.15 EV. One of the optimal examples is given on Fig. 6.
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  χ 2 = 3 . 0 7
1 0  p a r a m .

5 - n o d e
 s p l i n e

Figure 6: Optimal fit of the temperature dependence of the muon transfer rate with 5-node cubic spline. The
functions ΛpO (𝑇) and 𝜆pO (𝐸 ; {𝑝}) are shown on the left and right picture respectively.

From the investigated examples for piece-wise test functions, few conclusions could be made.
They fit the experimental data (ΛpO(𝑇)) quite well, and selected examples satisfy the conditions
from the beginning of the section. However, the confidence bands are unacceptably wide. In the
next section, we present the results of more complex flexible few-parameter smooth test functions.

3.2.3 𝐶∞ test functions

Here we will show the best results of fitting the experimental data with two types of functions,
which we can generally write as:
Type 1: Gaussian-like behavior at large E

𝜆 (5) (𝐸 ; {𝑝})=
( 𝑁∑︁
𝑘=1

𝑝𝑘𝐸
𝛼𝑘
)
exp(−(𝐸 − 𝑝𝑁+1)2/𝑝2

𝑁+2) + 𝑝𝑁+3, (5)

Type 2: Exponential behavior at large E

𝜆 (6) (𝐸 ; {𝑝})=
( 𝑁∑︁
𝑘=1

𝑝𝑘𝐸
𝛼𝑘
)
exp(−𝐸/𝑝𝑁+1) + 𝑝𝑁+2. (6)

The parameters 𝛼𝑘 are preselected, and some could be equal to zero. 𝑁 is positive integer. The
parameters 𝑝1, .., 𝑝𝑁+3 are found by the fitting procedure.

The simplest case of the Gaussian-like type functions Eq. (7) is when 𝑁 = 1 and 𝛼1 = 0. It is
quite successful as can be verified from Fig. 7. All criteria C1, C2, C3, and to some extent C4, are
satisfied. Chi-squared per degrees of freedom is relatively good too.

A better fit is achiever for 𝑁 = 2, when the following 4-parameter modification is used:

𝜆5∗(𝐸 ; {𝑝})=𝜆5(𝐸 ; {𝑝})−𝑑𝜆5(0; {𝑝})/𝑑𝐸−𝑑2𝜆5(0; {𝑝})/𝑑𝐸2 (7)
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Figure 7: A simple fit with Gaussian-like test function given by Eq. (5). Regardless of the small number of
parameters, the error band at 95% confidence level (on the right picture) is relatively low.

Its main advantage is that it better complies with Wigner law (C3). So, all four physical
requirements are satisfied. Two of the most promising fits of this type are shown on Fig. 8. The
blue and red curves correspond to Λ(5∗,1) (𝑇) and Λ(5∗,2) (𝑇) on the left picture and 𝜆 (5∗,1) (𝐸) and
𝜆 (5∗,2) (𝐸) - on the right one respectively. Although their parameters 𝛼𝑘 and 𝑝𝑘 are quite different,
both have similar behavior as function of temperature and of energy. The confidence band is narrow
for 𝐸 < 75 meV, and in acceptable level up to = 100 meV.
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Figure 8: (Color online) The best fits obtained with modification (7) of the Gaussian-like test function
given by Eq. (5). Both blue and red lines on the left (representing Λ5∗ (𝑇)) and the right (𝜆5∗ (𝐸)) pictures
are obtained for different parameters 𝛼2. The shadowed areas (light blue and light red) on the right figure
correspond to the respective transition rates’ confidence bands.

The best fits with test functions having exponential behavior for large energy Eq. (6), shown
in Fig. 9, satisfy all criteria C1-C4, have narrow uncertainties (better for low energies), and low
𝜒2/𝑛.𝑑. 𝑓 . They were obtained with N=2, 𝛼1 = 0 and the following three-parameter expression:

𝜆6∗(𝐸 ; {𝑝})=𝜆6(𝐸 ; {𝑝})−𝑑𝜆6(0; {𝑝})/𝑑𝐸−𝑑2𝜆6(0; {𝑝})/𝑑𝐸2. (8)
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Figure 9: (Color online) The best fits obtained with modification (8) of the Gauss test function given by
Eq. (6). Both blue and red lines on the left (representing Λ6∗ (𝑇)) and the right (𝜆6∗ (𝐸)) pictures are obtained
with different fitting parameters. The shadowed areas (light blue and light red) on the right figure correspond
to the respective transition rates’ uncertainty bands.

The fits with flexible few-parameter smooth test functions Eqs. (5) and (6) presented on Figs. 8
and 9, describe well the experimental data for the temperature dependence of the muon transfer rate.
Those fitting functions have low confidence bands and agree very well with the restrictions given
at the beginning of the section. It is important to note that all of them show similar behavior in the
whole energy range of interest, although they are obtained with different functions and function’s
parameters.

3.2.4 Best fit

In the preceding section, we investigated various few-parameter trial function types that lead
to fits of the experimental data of competitive quality. On Fig. 10 are shown the optimized trial
functions (qubic spline, Type 1 of Eq. (5), Type 2 of Eq. (6) and the modifications of Eqs. (7), (8)),
which correspond to the optimal fits of the ΛpO(𝑇) data, have the lowest 𝜒2 and satisfy conditions
C1-C4. We assume that the envelope of the set of selected 7 curves delimits the model uncertainty
band of the experimentally determined energy dependence of the rate of muon transfer to oxygen;
it is represented by the shadowed area on Fig. 10. We define as best fit to the muon transfer energy
dependence 𝜆best(𝐸) the median of the model uncertainty band; it is represented by the thick line
on Fig. 10. For energies below 80 meV the model uncertainty does not exceed 20%.

4. Summary and conclusion

We have shown that the problem of extracting the energy dependence of the muon transfer
rate from hydrogen to oxygen from the sparse data available does not have a unique solution. By
imposing a few physically motivated constraints on the fitting functions, the uncertainty of the
results was reduced to an acceptable level. We have found several expressions that fit the data well
and could be used in further studies on the topic. Adding additional experimental data will further
restrict the fitting parameter space and will increase the reliability of the derived fitting expressions.
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Figure 10: A combination of the best fits with functions considered in this work: 𝜆3 corresponds to qubic
spline, 𝜆5,1 and 𝜆5,2 - to Eq. (5), 𝜆5∗ ,1 and 𝜆5∗ ,2 - to Eq. (7), and 𝜆6∗ ,1, 𝜆6∗ ,2, 𝜆6∗ ,3 - to Eq. (8). The model’s
uncertainty is represented by the shadowed area and is given by the envelope of the seven fits. The thick line
is the envelope’s median and corresponds to the best fit.

The results presented here reveal a raise by an order of magnitude of the muon transfer rate to
oxygen with energy from 𝐸 ∼ 10 meV to 𝐸 ∼ 70 meV, and confirm the efficiency of the FAMU
method. In turn, the knowledge of detailed energy dependence 𝜆pO(𝐸) provides a tool for modeling
of the experiment and optimizing the experimental conditions for maximal efficiency. The results
set a reliable benchmark for computations of charge exchange and other low energy inelastic pro-
cesses with exotic atoms.
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