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Abstract 

Fitting potential energy curves (PEC) for diatomic molecules becomes a well-

established routine confirmed empirically with numerous examples in the literature. One 

of the questions, which remains still open concerns the extrapolation properties of the 

potential functions. The experimental PECs virtually always are determined from a 

limited set of experimental data and this in turns limits the range of internuclear distances 

where the shape of the potential is unambiguously fixed. Extrapolations are usually 

unreliable because there is no universal analytic form which parametrizes all possible 

potentials. The Morse/Long-Range (MLR) potential [1] has been reported to have a built 

in long-range asymptotic behavior and therefore it is plausible to expect that one can 

expect good extrapolation properties and even possibility to determine important 

molecular parameters like De or/and Cn from limited set of experimental data. In this 

contribution we study the extrapolation properties of the MLR potential by using real 

experimental data.  
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1. Introduction 

First approaches for construction accurate, fully quantum mechanical potential energy 

curves (PECs) for electronic states of diatomic molecules were published already in 1975-1977 

[2,3], and named Inverted Perturbation Approach (IPA). Since then, several scientific groups have 

followed these ideas and demonstrated successful application of IPA in tens, may be even 

hundreds of cases (examples can be found in [4-8]). The main feature which makes the various 

applications different is the mathematical form used to construct given PEC. Most often it is an 

analytic form, but in [4], a model-free, spline point-wise functions are proposed. Both approaches 

were demonstrated to have advantages. For example, the spline functions are the only form, 

successful for electronic states with shelf [9], double minimum [10], or other exotic shapes [11]. 

The analytic forms however are smoother and rarely show unphysical oscillations. 

Often the goal of a spectroscopic study is to find parameters of the electronic state, which 

are not directly measurable, but determined by interpolation (for example the potential minimum 

Ue, equilibrium distance Re) or by extrapolation (the dissociation energy De) from the fitted PEC. 

The last quantity De, together with the dispersion coefficients C6, C8 etc., which determine the 

long-range part of the PEC become important with the advances in the laser cooling and trapping, 

since this part determines the collision properties of the atoms at ultra-low temperatures. 

In many studies De, C6, C8 were derived from spectroscopic data and the analyses of their 

uncertainties have shown that for fitting reliable parameters one needs not only accurate and 

abundant experimental data, but also physically consistent model for the shape of the PEC at large 

internuclear distances [12].  

In some studies, the long-range part of the PEC: 

U(R) = De-C6/R
6- C8/R

8-…            (1) 

is simply attached to the inner part of the potential curve [12]. Other authors develop analytic 

forms with built-in long-range behavior, which asymptotically approach (1) as R goes to infinity 

[1,7,8,13]. The smooth and gradual transition from the analytic inner part to the asymptotic form 

(1) is expected to provide a physically consistent picture (see discussions e.g., in [13,14]. 

However, a systematic study of the extrapolation properties of these potential forms is still missing 

and this is the goal of the present paper. We concentrate on the MLR potentials, and we will study 

the influence of the type of potential, the number of potential parameters and the composition of 

the experimental dataset on the uncertainty of the long-range parameters.  

2. Methods 

As a testing case we choose the empirical potential curve for the ground state of calcium 

dimer from [12]. The accuracy of this potential curve and especially its long-range part has been 

confirmed in a series of further studies. In [12], Monte Carlo simulation was used to estimate the 

uncertainties of De, C6 and C8. The inner part of the potential was defined as spline pointwise and 

for the outer – (1) was applied. This approach offered a lot of flexibility, both sections of the 

potentials are independent, and their shape is determined mainly through the experimental data. 

On the other side, the MLR form is entirely analytic. It is smooth and more rigid than the pointwise 

one so it is plausible to expect that narrower confidence intervals on the long-range parameters 

will be obtained given the same experimental data. 
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In [1], the experimental data from [12], were used to derive a series of MLR potentials and 

the final form recommended by the authors has the same quality as the pointwise PEC [1], with 

very similar estimate on the long-range parameters. The uncertainties, however, were deduced 

from the matrix of variances and covariances and it did not consider the possible influence of the 

realization of the MLR potential. Therefore, in this study we construct a large variety of MLR 

potentials, using different number of parameters and fit them to the same experimental data as in 

[12]. The general form of MRL potential is [1,13]: 

𝑉𝑀𝐿𝑅(𝑟) = 𝐷𝑒 (1 −
𝑢𝐿𝑅(𝑟)

𝑢𝐿𝑅(𝑟𝑒)
𝑒−𝛽(𝑟)∙𝑦𝑝

𝑒𝑞
(𝑟))

2

  (2) 

where 

𝑦𝑝
𝑒𝑞(𝑟) =

𝑟𝑝−(𝑟𝑒)
𝑝

𝑟𝑝+(𝑟𝑒)
𝑝  (3) 

𝑦𝑝
𝑟𝑒𝑓(𝑟) =

𝑟𝑝−(𝑟𝑟𝑒𝑓)
𝑝

𝑟𝑝+(𝑟𝑟𝑒𝑓)
𝑝  (4) 

𝛽(𝑟) = 𝛽𝑀𝐿𝑅(𝑟) = 𝑦𝑝
𝑟𝑒𝑓(𝑟)𝛽∞ + [1 − 𝑦𝑝

𝑟𝑒𝑓
(𝑟)] ∑ 𝛽𝑖[𝑦𝑞

𝑟𝑒𝑓(𝑟)]𝑖𝑖=0   (5) 

𝑢𝐿𝑅(𝑟) =
𝐶𝑚1

𝑟𝑚1
+

𝐶𝑚2

𝑟𝑚2
+⋯,  (6) 

and  

𝛽∞ ≡ lim
𝑟→∞

{𝛽(𝑟) ∙ 𝑦𝑃
𝑒𝑞(𝑟)} = lim

𝑟→∞
{𝛽(𝑟)} = ln(

2𝐷𝑒

𝑢𝐿𝑅(𝑟𝑒)
)  (7) 

Usually rref, p, q are fixed parameters, while i, De, Cm, re may be fitted to the experimental 

data. See [1,13]. Detailed explanation on the fitting procedure may be find elsewhere [13], here 

we only mention that an initial guess for the potential parameters is needed, and it can be realized 

by fitting the MLR form to some realistic approximation of the PEC. For example, it could be an 

RKR potential [13], derived from the experimental data. When constructing this initial potential, 

usually rref, p, q are fixed to some reasonable values (see [13], for more details) and kept 

unchanged when the MLR curve is being iteratively improved.  

Since we are going to study the extrapolation properties of the MLR form, we will construct 

a sufficiently large set of potentials, which describe given set of experimental data within their 

uncertainty. Then we will examine the distribution of the main long-range parameters De, C6 and 

if all they fall within a reasonably narrow interval we may deduce, that the extrapolation properties 

of the MLR form are good. We would like to make it clear, that in this paper we do not study the 

propagation of the uncertainties from the experimental data to the fitted model parameters. This 

is a problem which can be solved either by using the matrix of variances and co-variances (as for 

example in [1, 13]) or via Monte Carlo analyses as in [12]. Here we want to study the ambiguity 

in parameters like De, C6 coming from different composition of the MLR model, i.e. different rref, 

p, q, number of i. Similar analyses, but with much fewer MLR models were performed in [1]. 

Initially we took the pointwise potential from [12], in the range [3.1 Å, 10.8 Å] and fitted 

various initial MLR potentials using the betafit code from [15], using different combinations of 

rref, p, q. All these initial curves were further refined through a nonlinear fitting routine by fitting 

parameters i, De, Cm, re until the fitted PEC reproduced the 3586 experimental frequencies (with 

v’’≤38) within their uncertainties. Since the experimental data have different uncertainties, as a 

measure of the quality of the fit we used the dimensionless standard deviation  (see [1,12]). The 

fitted potential was considered as good, if  is about 0.62 – 0.64, comparable to the value from 
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previous studies [1, 12, 13].  In this way about 100 different curves were constructed with 5.15 Å 

≤ rref ≤ 5.75 Å, 5 ≤ p ≤ 9 and 3 ≤ q ≤ 4. In a similar manner the simulation was repeated for a 

reduced data set with v’’ ≤ 35.  

When using pointwise potential with long-range extension [12], it was shown that the 

uncertainty of De and C6 strongly depends on the presence of weakly bound energy levels. 

Increase of vmax from 35 to 38 in [12], reduced the uncertainties significantly. If the extrapolation 

properties of the MLR potential are better, we expect to see small uncertainties of De and C6 even 

from smaller values of vmax. 

For every class of potential (defined by rref, p, q) we started to vary C6 with small steps each 

time refining the potential until  increases above 1.0. In this way we estimated the possible 

variations of long-range parameters, consistent with the experimental data.  

3. Results and Analyses  

In Fig.1 we present the distribution of the De and C6 parameters of about 100 classes of MLR 

potentials for vmax = 35 and 38. Each plot contains about 1000 points, resulting from various (De, 

C6) combinations within a set of rref, p, q. The shape of the distribution gives an impression about 

the strong correlation between De and C6. With different shades of gray, we indicate the 

dimensionless standard deviation . The division between them is somewhat arbitrarily. With 

black dots we indicate potentials which have  ≤ .  
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Figure 1: Distribution of the De and C6 parameters of MLR potentials by using different values of rref, p, 

q and varying C6. 

In order to avoid any confusion, we stress the difference between the distributions from Fig.1 

and the one from [12]. In [12] the distribution is result of a Monte Carlo simulation by fitting a 

model to various sets of synthetic experimental data and this simulation shows the uncertainty of 

the parameters coming from the uncertainties of the experimental data within given model. In Fig. 

1 we show distribution which results from different MLR models and the same experimental data. 

In [1] all experimental data were analyzed (vmax=38) and De was estimated to be 1102.076 ± 

0.004 cm-1 (1 confidence interval) and for C6: (1.032±0.01) ×107 cm-1Å6 (1). In a later 

publication [13] even smaller uncertainties were reported, for example C6 = 1.046 (±0.003) ×107 

cm-1Å6 (1). From Fig.1 (vmax=38) we can see that only by changing rref, p and q one can produce 

MLR potentials with comparable  while De is varying within approximately ±0.02 cm-1 and C6 

˗ within ±0.08×107 cm-1Å6. This apparent discrepancy must be resolved. In [1,13] uncertainties 

coming from the matrix of variances and covariances are reported. They are based on the 

uncertainties of the experimental data for given realization of the MLR potential. In Table 3 of 

Ref. [1] the authors show values for De and C6 for few different MLR realizations and their 

variation significantly exceeds the estimated uncertainties. At the same time these variations fall 

well within the intervals shown in Fig.1. Therefore, the uncertainties of the final parameters in 

[1,13] do not account for all possible model dependencies. In fact, in [1] additional analyses were 

performed to justify the final choice of rref, p and q (e.g., Fig. 3 in Ref. [1]) and these 

considerations are reasonable. The goal of our study however is to set an upper limit for the 

uncertainties coming from the construction of the MLR model itself and to show that regardless 

of the choice of rref, p, q and number of i parameters the fitted long range parameters will lie 

within very reasonable intervals. Every physical consideration which allows to limit the variation 

of these parameters will only further narrow the intervals. 

In [12] PEC for the ground state of Ca dimer was determined by applying a very different 

model function using the same experimental data. For small internuclear distances a cubic spline 

function was used and for R>Rout the same long-range expression (1) is applied. To estimate the 

uncertainties of the long-range parameters Monte-Carlo simulations were carried out for Rout = 
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9.4 Å and Rout = 10.0 Å. When Rout = 9.4 Å the variation of D0 was estimated and is reported to be 

±0.01 cm-1 (1) D0 is defined as U (∞)-Ev=0,J=0, while De = U(∞)-Ue. Since the energy of the 

potential minimum is an unmeasurable quantity and extrapolated, usually De is associated with 

larger uncertainty that D0. In [12] the uncertainty of Ue is estimated to be about ±0.01 cm-1 and it 

is plausible to estimate the uncertainty in De from [12] to ±0.014 cm-1 which is closer to the 

estimate of this study. In [12] it is shown that the model also influences the uncertainty of the 

fitted parameters through the choice Rout. Indeed, when Rout = 10.0 Å, the uncertainty in De 

increases to about ±0.017 cm-1. 

The advantage of the MLR potential starts to be visible when comparing the distribution of 

De and C6 for vmax = 35 from Fig. 1 and Fig. 5 from Ref. [12]. The pointwise model [12] with Rout 

= 9.4 Å, extrapolates De with uncertainty about ±0.4 cm-1, while the whole set of MLR potentials 

predicts De to within ±0.08 cm-1. The pointwise model would lead to even larger uncertainty for 

Rout = 10.0 Å. The long-range parameters in [12] are determined mainly from the positions of the 

very last energy levels (v’’=33-35) and the values of the pointwise function around the connection 

point Rout. On the other hand, the transition between the short-range and the long-range part in the 

MLR function is continuous, which introduces more limitations on the possible variations of De 

and C6. The advantages of the abrupt transition between two functional forms are discussed in 

[12]. In brief this is a very flexible way of extrapolation the PEC to large internuclear distances, 

and it may be used to set an upper limit to the uncertainties. Analytic functions, in principle, may 

be less flexible and therefore the uncertainties of the long-range parameters may be smaller, but 

not necessarily more accurate. 

4. Discussion 

We presented results from the study of the extrapolation properties of the MLR potential 

form based on comparison between the Ca2 ground state potential, derived in [1,12,13]. The 

experimental uncertainty of De and C6 from [1,13] does not consider all possible realizations of 

MLR, therefore we believe that the reported uncertainties may be somewhat too optimistic. The 

spline/long-range model from [12] on the other side is too flexible and the reported uncertainties 

may be too large (for example when Rout  10.0 Å). Our analyses show that the predictions of the 

large variety of MLR models agree quite well both for {vmax = 35} and {vmax = 38} data sets. So, 

it is very likely that the MLR model is very suitable, and it offers good extrapolation properties. 

Further work is needed, however. We plan to study the uncertainties of De and C6 when the data 

set is reduced to {vmax = 30} or even {vmax =25}. The binding energy of v’’ = 30 is about 20 cm-1 

with outer turning point about 9 Å and for v’’ = 25 the binding energy is 80 cm-1 with outer 

turning point 7.6 Å. Both these points are below the so called Le Roy radius for Ca2, beyond 

which the long-range expansion (1) is assumed to be valid. It is also interesting to check the 

extrapolation properties in a similar manner for different electronic states and different molecules. 

Ca2 is a very pure case with single electronic state, 1S+1S atomic asymptote and zero nuclear spin. 

The ground states of alkali metal diatomic, considered also as simple, have 2S+2S asymptote, non-

zero nuclear spin and two electronic states, 1+ and 3+, coupled via Fermi contact interaction. 

Alkaline-earth hydrides,1S+2S, offer also relatively simple structure of the ground Hund’s case b 
2+ state. Here, however, the spin-rotation interactions should be considered. For all these cases 

abundant experimental data exist, so extending the present analyses seems possible. 
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