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Haldane model is devoted to explore the electron spectra of honeycomb hexagonal 2D lattice. In 

this paper we treat its connections with the excitonic spectra of two types of molecular excitations, 

Frenkel excitons (FEs) and Charge Transfer Excitons (CTEs) and study the generalized Haldane 

model in 2D Lattices of hexagonal symmetry. Excitations with transition dipole moment 

perpendicular to the lattice or in-plane moments are considered in the following cases: a) FEs in 

honeycomb model with two identical nonequivalently positioned molecules in unit cell; b) FEs 

and CTEs coupling in Donor-Acceptor (DA) solids with two different molecules in unit cell; c) 

indirect coupling of FEs in DA solids via their coupling with CTEs. The equations for the excitonic 

spectra, especially in case c, could be used in more precise interpretation of spectroscopic data or 

in other applications of Haldane model. 
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1.Introduction 

The topic of Haldane model [1] is the impact of topology of 2D honeycomb lattice on the 

electronic spectra. This model includes “the topology trivial” coupling between the nearest 

neighbors and “topologically non-trivial” coupling with the second neighbors of one sublattice. 

The conceptual features of Haldane model have been used in explorations of graphene [2] and of 

topological photonic systems. 

In the present communication we connect this model and our previous investigations on 

excitonic spectra of 2D hexagonal lattices [3-5].  Using Haldane model we treat more complicated 

excitonic problems. On the other hand, our generalization of the model introduces vector 

characters of coupling parameters for excitations with transition dipole moment perpendicular to 

2D-layer or in-plane transition moment. 

Two types of molecular excitons are treated in our study: a) Frenkel excitons (FEs) which 

are transferable electronic excitations of neutral molecules [6,7]; b) Charge Transfer excitons 

(CTEs) which represent a pair of positive and negative ion situated on neighbor lattice sites. We 

consider CTEs in Donor-Acceptor (DA) solids with two different ionized molecules (see Ref. 

[7,8,9]). 

The outline of the paper is the following: in Section 2 we consider the case of two identical 

nonequivalently positioned molecules in unit cell of hexagonal symmetry and obtain the spectra 

of dipole active FEs. In Section 3 the spectra of FEs-CTEs in DA crystal of honeycomb 2D 

structure are studied. In Section 4 the indirect coupling of FEs via CTEs is analyzed. Section 5 

contains some concluding remarks. 

2.Honeycomb model with two identical molecules 

This model is known now using the schemes of graphene studies (Fig. 1). Practically we 

treat the problem of FEs spectra with two molecules in unit cell [6,7]. Two types of dipole active 

FEs exist, notably [5], 

a) z-excitons with transition dipole perpendicular to the plane; 

b) xy-excitons with in-plane transition dipole moment. 

 
Let BZ1(n) and BZ2(n) denote the operators of annihilations of FEs on molecule 1(2) of site 

𝑛 ⃗⃗⃗  . Hamiltonian of z-excitons in momentum space can be represented as follows [5]: 

 

FIGURE 1. Honeycomb model with two identical nonequivalently positioned molecules 1 and 2. Vec-

tors (𝑎1,⃗⃗⃗⃗  ⃗ 𝑎2⃗⃗⃗⃗ ) are the transition vectors of 2D lattice, axis 𝑧̂  is normal to the layer.𝑘1  ⃗⃗⃗⃗⃗⃗  𝑎𝑛𝑑 𝑘2
⃗⃗⃗⃗  create the 

basis in the reciprocal lattice. 
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𝐻̂𝑧 = ∑ [𝐸𝐹 + 𝑉1𝑓(𝑘)]𝑘,𝜎=1,2 𝐵𝑧𝜎
+ (𝑘)𝐵𝑧𝜎(𝑘) + ∑ [𝑀(𝑘)𝐵𝑧1

+ (𝑘)𝐵𝑧2(𝑘) + ℎ𝑐]𝑘 , (1)  

in which terms with M(k) express “trivial coupling” and with 𝑉1 =
𝑝𝑧

2

4𝜋𝜀0𝑎
3  - “nontrivial coupling” 

(following Haldane). pz is z-component of molecular transition dipole moment, EF is molecular 

excitation energy, 

𝑓(𝑘) = 2[cos(𝑘1𝛾) + cos(𝑘2𝛾) + cos((𝑘1 − 𝑘2)𝛾)] ; (𝛾 =
𝑎√3

2
),  (2) 

a being the length of hexagonal lattice vectors (𝑎1,⃗⃗⃗⃗  ⃗ 𝑎2⃗⃗⃗⃗ ) , and 

𝑀(𝑘) =
𝑝𝑧

2[1+𝑒−𝑖𝑘1𝛾+𝑒−𝑖𝑘2𝛾]

4𝜋𝜀0𝑐
3 ; 𝑐 = 𝑎/√3  (3) 

In the paper we suppose dipole-dipole transfers of FEs on the nearest neighbors only. 

Diagonalization of Hamiltonian (1) gives the following formula for the excitonic spectra and their 

Davydov splitting: 

𝐸𝑧(𝑘) =  𝐸𝐹 + 𝑉1𝑓(𝑘) ± |𝑀(𝑘)|; [|𝑀(𝑘)|2 = [𝑝𝑧
2/(4𝜋𝜀0𝑐

3]2[𝑓(𝑘) + 3]] (4) 

Fig.2 illustrates dispersion curves of FEs at different values of 𝑘2
′ =

𝑘2𝑎√3

2
 for medium 

transition dipole moment pz (V1=0.015 eV). The most interesting effect is relatively big Davidov 

splitting at (k1=k2=0) which will appear in optical phenomena. In our model dispersion curves at 

k2’=π are two parallel straight lines.   

xy-excitons are degenerate and the equation for their spectra in honeycomb model is quartic. 

Let introduce two circularly polarized (left- and right-) electronic excitations in each molecule 

𝑛⃗  , 𝜎 = 1,2 using formulas 

𝐵𝑙;𝑟;𝜎
(𝑛⃗ )

= (
1

√2
) [𝐵𝑥;𝜎

(𝑛⃗ )
∓ 𝑖𝐵𝑦;𝜎

(𝑛⃗ )
],  (5) 

in which 𝐵𝑥;𝜎
(𝑛⃗ )

(𝐵𝑦;𝜎
(𝑛⃗ )

) are operators of annihilation of electronic excitations with transition dipole 

moment ph along x(y) axis. The transition dipole moment expressed with those new operators is: 

𝑃̂𝑛 = (
𝑝ℎ

√2
) [(𝑒𝑥 − 𝑖𝑒𝑦) (𝐵𝑙,𝜎

(𝑛)+
+ 𝐵𝑟,𝜎

(𝑛)
) + (𝑒𝑥 + 𝑖𝑒𝑦) (𝐵𝑟,𝜎

(𝑛)+
+ 𝐵𝑙,𝜎

(𝑛)
)],  (6)  

in which ex ,ey are unit vectors. We suppose again that the excitonic transfer is a result of dipole-

dipole coupling of the transition dipoles (6) of the nearest- neighbor molecules. One obtains the 

 
 

FIGURE 2.  Davidov splitting of z-FEs (formula (4)). EF=2.35eV, V1=0.015eV, ki’=
𝑘𝑖𝑎√3

2
 , i=1,2 

1. k2’=0(black), π/2 (green), π (red) lines b)  k2’=π/4(black) 3π/4 (green) lines 
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following Hamiltonian in Heitler-London approximation [6,7] taking the intensive “trivial” 

coupling only: 

𝐻̂𝑙,𝑟 = ∑ [𝐸𝐹1 + 𝑉2𝑓(𝑘)][𝐵𝑙.𝜎
+ (𝑘)𝐵𝑙,𝜎(𝑘) + 𝐵𝑟.𝜎

+ (𝑘)𝐵𝑟,𝜎(𝑘)] −
𝐴3

2
∑ {[𝐵𝑙,2

+ (𝑘)𝐵𝑙,1(𝑘) +𝑘𝑘,𝜎

𝐵𝑟,2
+ (𝑘)𝐵𝑟,1(𝑘)]𝑡2 + ℎ𝑐} −

3𝐴3

2
∑ [𝐵𝑙,2

+ (𝑘)𝐵𝑟,1(𝑘)𝑡3 + 𝐵𝑙,1
+ (𝑘)𝐵𝑟,2(𝑘)𝑡4 + ℎ𝑐]𝑘  , (7) 

in which 

𝑉2 = −
𝑝ℎ

2

4𝜋𝜀0𝑎
3
  , 𝐴3 =

𝑝ℎ
2

4𝜋𝜀0𝑐
3
 

𝑡2 = 1 + 𝑒𝑖𝑘1𝛾 + 𝑒𝑖𝑘2𝛾    𝑡3,4 = 𝑒−𝑖𝜋/3 [1 + 𝑒𝑖(±𝑘1𝛾+
2𝜋

3
) + 𝑒𝑖(±𝑘2𝛾+

4𝜋

3
)]     

Strictly speaking the precise calculations of Hamiltonian (7) give additional terms 

(nontrivial coupling) proportional to 1/a3, not to 1/𝑐3 = 3√3/𝑎3  like A3. Their impact on the 

excitonic spectra in the center of Brillouin zone (k=0) and for other values of (k1,k2) is zero. In 

those cases one obtains the following equation for the excitonic spectra E: 

𝜀4 − 𝜀2 (
𝐴3

2

4
) [9|𝑡4|

2 + 9|𝑡3|
2 + 2|𝑡2|

2] + [
𝐴3

4

16
] [|𝑡2|

4 − 9(𝑡2
2𝑡3𝑡4

∗ + 𝑡2
∗2𝑡3

∗𝑡4) + 81|𝑡3|
2|𝑡4|

2] = 0 

 (8) 
in which 𝜀 = 𝐸𝐹1 + 𝑉2𝑓(𝑘) − 𝐸 . In the center of Brillouin zone (k=0) we obtain a degenerate 

pair of excitonic levels: 

𝑘 = 0  𝜀1,2 = ±3𝐴3/2  

At 𝑘1 =
2𝜋

3
 , 𝑘2 = −𝑘1 one obtains 𝜀1,2 = 0 , 𝜀3,4 = ±9𝐴3/2. 

Calculations of xy-excitonic spectra represent an example of Haldane model with 

degeneracy of excitations. 

3.Honeycomb model in DA lattices  

In this section we treat the two-component DA lattices in which the coupling of the nearest 

neighbor molecules can transform FE into another type of excitation – CTE (see Introduction and 

Ref. 4). The scheme of the hexagonal DA graphene-like lattice is shown on Fig.3. Two different 

systems of FEs appear, one – of electronic excitations of donors, another – of acceptors and direct 

transfer of FEs between the two systems is impossible due to the different molecular excitations. 

 

 

FIGURE 3. Two hexagonal sublattices of donors (white circles) and acceptors (black). (𝑎1 ⃗⃗⃗⃗  ⃗ , 𝑎2⃗⃗⃗⃗ ) are 

the lattice vectors, a is the lattice constant. Numerals 1-3 denote three identical CTEs. 
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Three identical CTEs of neighboring ionized pair of DA molecules can be excited directly 

or via transformation of FEs of donors or acceptors. So called “trivial coupling” between DA 

neighbors can be realized via the transfers of electron from neutral excited D- molecule (with FE 

on it) to A molecule transforming FE into CTE (or via the transfers of electrons from neutral 

nonexcited D-molecule to excited A-molecule with another type of  FE on it). The transformation 

is more effective if the excitation energy of FEs (EF) and of CTEs (EC) are close. Hamiltonian of 

coupled z-FEs and CTEs can be represented as follows: 

𝐻̂(𝑧) = ∑ [𝐸𝐹 + 𝑉1𝑓(𝑘)]𝐵𝑧𝑘
+ 𝐵𝑧𝑘 + 𝐻̂𝐶𝑇𝐸𝑠 + (

𝑢

√3
) ∑ [𝐵𝑧𝑘

+ 𝐶𝑖𝑘 + ℎ. 𝑐]𝑘,𝑖=1−3𝑘  ,  (9)  

in which  

𝐻̂𝐶𝑇𝐸𝑠 = ∑ {𝐸𝑐𝐶𝑖𝑘
+𝐶𝑖𝑘 + 𝐽𝑒(𝐶1𝑘

+ 𝐶2𝑘 + 𝐶2𝑘
+ 𝐶3𝑘 + 𝐶3𝑘

+ 𝐶1𝑘 + ℎ. 𝑐) +𝑘,𝑖=1−3

𝐽ℎ[𝐶2𝑘
+ 𝐶1𝑘 exp(−𝑖𝑘1𝛾) + 𝐶3𝑘

+ 𝐶2𝑘 exp(−𝑖(𝑘1 − 𝑘2)𝛾) + 𝐶1𝑘
+ 𝐶3𝑘 exp(𝑖𝑘2𝛾) + ℎ. 𝑐]} . (10) 

Cik is operator of annihilation of CTEs, i=1-3, (Je,Jh) are transfer integrals of electron (hole) 

and represent nontrivial coupling of CTEs. The CTEs combination (
1

√3
)(𝐶1𝑘 + 𝐶2𝑘 + 𝐶3𝑘) has 

symmetry of z-excitons and u is coupling parameter (“trivial coupling”). Diagonalization of 

Hamiltonian (9) leads to the following equation for FEs-CTEs spectra [4]: 

[𝐸𝐹 + 𝑉1𝑓(𝑘) − 𝐸]𝐷0(𝑘) + 𝑢2 [𝐸 − 𝐸𝑐 + 𝐽𝑒 + 𝐽ℎ(
𝑓(𝑘)

3
− 1)] = 0 ,  (11) 

𝐷0(𝑘) = (𝐸𝑐 − 𝐸)2 + (𝐸𝑐 − 𝐸)(𝐽𝑒 + 𝐽ℎ) − 2 [𝐽𝑒
2 + 𝐽ℎ

2 + (
𝑓(𝑘)

2
− 1)/𝐽𝑒𝐽ℎ] .  (12) 

  

FIGURE 4. Dispersion curves of coupled z-FEs and CTEs (formula (13), EF=2.34eV, Ec=2.27eV, 

V1=0.01eV, u=0.04eV. For the other see Fig.2 

The quantities EF, V1 (see Section 2) as well as the coupling parameter u would be different 

for FEs which stem from donors and from acceptors. In the case of negligible transfer integrals 

Je=Jh=0 one obtains two excitonic levels: 

𝐸1,2(𝑘) = (𝐸𝐹 + 𝑉1𝑓(𝑘) + 𝐸𝑐)/2 ± √[𝐸𝑓+𝑉1𝑓(𝑘)−𝐸𝑐]
2

4
+ 𝑢2.  (13) 

Dispersion curves of coupled z-FEs-CTEs are exposed on Fig.4. We note again as it is in the 

case of Fig.2 relatively big splitting, at k1=k2=0 and two parallel straight lines at k2’=π. Dispersion 

of the levels which stem from Ec=2.27 eV level of CTEs is relatively smaller compared with 

dispersion of upper curve related with FEs. 
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4.Indirect coupling in Haldane model 

We repeat that direct coupling of the two types of FEs – originated from donors and from 

acceptors is impossible. But the coupling of both types of FEs with CTEs creates the opportunity 

of indirect connection between them. 

Let Hamiltonian (9) concerns z-excitons which stem from donors. The similar Hamiltonian 

can be written for z-excitons of acceptors’ electronic excitations: 

𝐻̂𝐴𝐶
(𝑧)

= ∑ [𝐸𝐹𝐴 + 𝑉𝐴𝑓(𝑘)]𝑘 𝐴𝑧𝑘
+ 𝐴𝑧𝑘 + (

𝑢3

√3
)∑ [𝐴𝑧𝑘

+ 𝐶𝑖𝑘 + ℎ. 𝑐]𝑘,𝑖=1−3 .  (14) 

The equation for excitonic spectra E at Hamiltonian (9)+(14) is the following: 

1 − 𝑑(𝑘) [
𝑢2

𝐸𝐹+𝑉1𝑓(𝑘)−𝐸
+

𝑢3
2

𝐸𝐹𝐴+𝑉𝐴𝑓(𝑘)−𝐸
] = 0 (15) 

in which function d(k) depends on the parameters of CTEs only which ensures this indirect 

coupling. Hamiltonian (10) for CTEs gives the following function: 

𝑑(𝑘) = [𝐸𝑐 − 𝐸 − 𝐽𝑒 − 𝐽ℎ (
𝑓(𝑘)

3
− 1)] /𝐷0(𝑘)  (16) 

(see formula (12)). 

The basis equation (15) is quartic and its roots depend on mutual location of the levels EF, 

EFA and EC. In the case of negligible transfer integrals Je=Jh=0 function d(k) is 

d(k)≈1/(Ec-E) 

If one of the “trivial coupling” parameters u or u3 is vanishing we obtain the excitonic spectra 

described in Section 3. 

The three- type excitations coupling contributes to more precise calculations of the spectra 

of FEs and CTEs. The indirect coupling of FEs via CTEs represents a specific case of mixing of 

molecular configurations [6,7]. 

5.Conclusion 

The result of this study can be summarized in the following points: 

1. Based on the Haldane model we considered several cases of excitonic spectra in 

honeycomb lattice of identical molecules or of DA-2D lattice. The paper continues the previous 

contributions of the authors and their co-authors on the excitonic spectra and introduces some 

new ideas as description of xy-excitons in hexagonal lattice, indirect coupling of FEs via CTEs 

etc. In some cases we simulate the excitonic spectra in Brillouin zone. 

2. The excitonic spectra of honeycomb model give the example of generalization of Haldane 

model itself, including the anisotropy of coupling parameters, degeneracy of excitations, “trivial 

coupling” with transformation of excitations (FEs-CTEs coupling) and even indirect coupling. 

This generalization could be used treating the problems very far from molecular excitons’ spectra.    
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