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Transmission lines are traditionally modelled by considering Heaviside’s elementary circuit that
contains a resistor and inductor in the series branch, accounting for the energy losses and magnetic
effects, while the shunt branch contains a resistor and a capacitor, accounting for the energy losses
and capacitive phenomena. Classical telegrapher’s equations, modelling the signal propagation
in a transmission line, are obtained by assuming the infinitesimal length of the elementary circuit
and by passing to a continuum. The generalization of elementary circuit is two-fold: topological
by adding the capacitor in the series branch in order to account for the charge accumulation effects
along the line and constitutive in order to account for the memory effects that transmission line
may display. The constitutive generalization is performed by changing the constitutive relation
describing the capacitive and inductive material properties using the fractional calculus approach
accounting for the short-tail memory. On the other hand, the inclusion of nonlocal material
properties of a transmission line is performed by considering the magnetic coupling of inductors
in the series branch of Heaviside’s elementary circuit, so that the magnetic flux is obtained as a
superposition of local and constitutively given nonlocal magnetic flux through the cross-inductivity
kernel. Signal propagation is studied in the case of power, exponential, and Gauss type cross-
inductivity kernels. The presented results are published in [1–3].
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Modelling hereditary and nonlocal transmission lines Dušan Zorica

1. Introduction

Small-scale structures, including transmission lines, may display non-locality effects and the
aim of this theoretical study is to: model these effects, formulate the corresponding non-local
telegrapher’s equations, and analyze those equations analytically and numerically. The starting
point is the 𝑘-th Heviside’s elementary circuit, shown in Figure 1, modeling the transmission line
physical properties, while non-local telegrapher’s equations

− 𝜕

𝜕𝑥
𝑣(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) 𝑖(𝑥, 𝑡) + 𝜕

𝜕𝑡
𝜙(𝑥, 𝑡) − E(𝑥, 𝑡),

− 𝜕

𝜕𝑥
𝑖(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) 𝑣(𝑥, 𝑡) + 𝜕

𝜕𝑡

(
𝐶 (𝑥, 𝑡) 𝑣(𝑥, 𝑡)

)
,

𝜙(𝑥, 𝑡) = 𝐿 (𝑥, 𝑡) 𝑖(𝑥, 𝑡) +
∫ 𝑏

𝑎

𝑚(𝑥, 𝜁 , 𝑡) 𝑖(𝜁, 𝑡) d𝜁,

mathematically describing the transmission line responses, are obtained from Kirchhoff’s laws
applied to the 𝑘-th elementary circuit in the limit when circuit length Δ𝑥𝑘 tends to zero, while the
number of circuits tends to infinity.

Figure 1: Elementary circuit of the nonlocal transmission line model.

The elementary circuit, as seen from Figure 1, consists of: series resistor and inductor, denoted
by Δ𝑅𝑘 , Δ𝐿𝑘 , modeling dominantly conductive properties of transmission line; shunt capacitor
and conductor, denoted by Δ𝐶𝑘 , Δ𝐺𝑘 , modeling its insulative properties; and electromotive force,
denoted by ΔE𝑘 , modeling the external influence on the line. The current at time-instant 𝑡, running
through the series branch of the 𝑘-th elementary circuit, is denoted by 𝑖𝑘 = 𝑖𝑘 (𝑡), while 𝑣𝑘 = 𝑣𝑘 (𝑡)
denotes the (time dependent) voltage on its shunt branch. The non-locality effects originate from
the magnetic coupling of inductors in the series branch, namely by assuming that the magnetic
flux within elementary circuit is the consequence of currents running through series branches of all
elementary circuits rather than just one elementary circuit.
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Modelling hereditary and nonlocal transmission lines Dušan Zorica

Another aim is to derive and analyze a generalization of the classical telegrapher’s equation,
where both capacitive and inductive phenomena are assumed to be of fractional-order type. In
addition, the model under consideration takes into account the phenomena of charge accumulation
along the line. Equivalent elementary circuit is shown in Figure 2. The generalized telegrapher’s
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Figure 2: Elementary circuit of the hereditary transmission line model.

equation corresponding to the transmission line model with elementary circuit as in Figure 2 takes
the form (

𝜏𝐿𝐶 0D𝛼+𝛽+𝛾
𝑡 + 𝜏𝐿𝐺 0D𝛼+𝛽

𝑡 + 𝐿𝐶 0D𝛼+𝛾
𝑡 + 𝐿𝐺 0D𝛼

𝑡

+𝑅𝐶 0D𝛾
𝑡 + 𝑅𝐺

)
𝑢 (𝑥, 𝑡) =

(
𝜏 0D𝛽

𝑡 + 1
) 𝜕2

𝜕𝑥2 𝑢 (𝑥, 𝑡) , (1)

where 𝑢 is voltage between line conductors at position 𝑥 and at time instant 𝑡. The Riemann-Liouville
fractional derivative of order 𝜉 is defined by

0D𝜉
𝑡 𝑓 (𝑡) =

d⌈ 𝜉 ⌉

d𝑡 ⌈ 𝜉 ⌉ 0I⌈ 𝜉 ⌉−𝜉
𝑡 𝑓 (𝑡) , (2)

where ⌈𝜉⌉ is the smallest integer bigger or equal to 𝜉 and where 0I𝜉𝑡 , 𝜉 > 0, is the operator of
fractional integration, defined by

0I𝜉𝑡 𝑓 (𝑡) =
1

Γ(𝜉)

∫ 𝑡

0
(𝑡 − 𝜏) 𝜉−1 𝑓 (𝜏)d𝜏 = 𝑡 𝜉−1

Γ (𝜉) ∗ 𝑓 (𝑡) , (3)

where Γ is the Euler gamma function and ∗ denotes the convolution, which is for the causal function
defined by 𝑓 (𝑡) ∗ 𝑔 (𝑡) =

∫ 𝑡

0 𝑓 (𝜏) 𝑔 (𝑡 − 𝜏) d𝜏. The constant 𝜏 is related to charge accumulation
effects. The equivalent form of the generalized telegrapher’s equation (1) is(

𝜏𝐿𝐶 0D𝛼+𝛾
𝑡 + 𝜏𝐿𝐺 0D𝛼

𝑡 + 𝐿𝐶 0D𝛼+𝛾
𝑡 0I𝛽𝑡 + 𝐿𝐺 0D𝛼

𝑡 0I𝛽𝑡

+𝑅𝐶 0D𝛾
𝑡 0I𝛽𝑡 + 𝑅𝐺 0I𝛽𝑡

)
𝑢 (𝑥, 𝑡) =

(
𝜏 + 0I𝛽𝑡

) 𝜕2

𝜕𝑥2 𝑢 (𝑥, 𝑡) . (4)

The highest order of fractional differentiation in the generalized telegrapher’s equation (1) is, in
general, from the interval (0, 3) , since 𝛼, 𝛽, 𝛾 ∈ (0, 1). This would imply that (1), apart from sub-
diffusion (the highest order is in the interval (0, 1)) and diffusion-wave (the corresponding interval
is (0, 2)), would cover phenomena modelled by equation with the order higher than order of the
wave equation. However, from the equivalent form of the generalized telegrapher’s equation (4) is
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Modelling hereditary and nonlocal transmission lines Dušan Zorica

obvious that the highest order of fractional differentiation is 𝛼 + 𝛾 ∈ (0, 2) , since the differentiation
operator on the right-hand-side in (1), unlike the integral operator in (4), actually reduces the highest
order of fractional differentiation. Thus, if 𝛼 + 𝛾 ∈ (0, 1) in (4), then one expects the response of
the diffusive type, while if 𝛼 + 𝛾 ∈ (1, 2) in (4), then the wave type response is expected.

2. Models

2.1 Derivation of non-local telegrapher’s equations

Application of Kirchhoff’s laws to the 𝑘-th elementary circuit from Figure 1 imply the following
two equations

− 𝑣𝑘−1(𝑡) + Δ𝑅𝑘 (𝑡) 𝑖𝑘 (𝑡) + Δ𝑢𝑘 (𝑡) − ΔE𝑘 (𝑡) + 𝑣𝑘 (𝑡) = 0, (5)

𝑖𝑘 (𝑡) − 𝑖𝑘+1(𝑡) − Δ𝐺𝑘 (𝑡) 𝑣𝑘 (𝑡) −
d
d𝑡

(
Δ𝐶𝑘 (𝑡) 𝑣𝑘 (𝑡)

)
= 0, (6)

where the inductor voltage

Δ𝑢𝑘 (𝑡) =
d
d𝑡
Δ𝜙𝑘 (𝑡) (7)

is induced by the time-changes of magnetic flux within the 𝑘-th elementary circuit Δ𝜙𝑘 . If
the magnetic flux is due only to the current of the same circuit 𝑖𝑘 , then the elementary circuit
corresponds to the local (classical) model of transmission line and classical telegrapher’s equation
is obtained. Non-locality effects in transmission line modeling are introduced by assuming the
magnetic flux within the 𝑘-th elementary circuit Δ𝜙𝑘 to be a consequence not only of the current
𝑖𝑘 running through the 𝑘-th series branch, but also of currents 𝑖 𝑗 , 𝑗 = 1, . . . , 𝑁 , 𝑗 ≠ 𝑘 , running
through all others series branches, so that the magnetic flux Δ𝜙𝑘 is written as

Δ𝜙𝑘 (𝑡) = Δ𝐿𝑘 (𝑡) 𝑖𝑘 (𝑡) +
𝑁∑︁
𝑗=1
𝑗≠𝑘

Δ2𝑚𝑘 𝑗 (𝑡) 𝑖 𝑗 (𝑡), (8)

where Δ2𝑚𝑘 𝑗 is the cross-inductivity coefficient, quantifying the influence of elementary current 𝑖 𝑗
to flux of the 𝑘-th elementary contour.

In order to obtain non-local transmission line model, the spatially discretized system of equa-
tions (5) - (7), with (8), corresponding the 𝑘-th elementary circuit, is rewritten as

−𝑣𝑘 (𝑡) − 𝑣𝑘−1(𝑡)
Δ𝑥𝑘

=
Δ𝑅𝑘 (𝑡)
Δ𝑥𝑘

𝑖𝑘 (𝑡) +
d
d𝑡

Δ𝜙𝑘 (𝑡)
Δ𝑥𝑘

− ΔE𝑘 (𝑡)
Δ𝑥𝑘

,

− 𝑖𝑘+1(𝑡) − 𝑖𝑘 (𝑡)
Δ𝑥𝑘

=
Δ𝐺𝑘 (𝑡)
Δ𝑥𝑘

𝑣𝑘 (𝑡) +
d
d𝑡

(
Δ𝐶𝑘 (𝑡)
Δ𝑥𝑘

𝑣𝑘 (𝑡)
)
,

Δ𝜙𝑘 (𝑡)
Δ𝑥𝑘

=
Δ𝐿𝑘 (𝑡)
Δ𝑥𝑘

𝑖𝑘 (𝑡) +
𝑁∑︁
𝑗=1
𝑗≠𝑘

Δ2𝑚𝑘 𝑗 (𝑡)
Δ𝑥𝑘 Δ𝑥 𝑗

𝑖 𝑗 (𝑡) Δ𝑥 𝑗 ,

which in the limit when Δ𝑥𝑘 → 0 and 𝑁 → ∞ yields non-local telegrapher’s equations

− 𝜕

𝜕𝑥
𝑣(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) 𝑖(𝑥, 𝑡) + 𝜕

𝜕𝑡
𝜙(𝑥, 𝑡) − E(𝑥, 𝑡), (9)
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− 𝜕

𝜕𝑥
𝑖(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) 𝑣(𝑥, 𝑡) + 𝜕

𝜕𝑡

(
𝐶 (𝑥, 𝑡) 𝑣(𝑥, 𝑡)

)
, (10)

𝜙(𝑥, 𝑡) = 𝐿 (𝑥, 𝑡) 𝑖(𝑥, 𝑡) +
∫ 𝑏

𝑎

𝑚(𝑥, 𝜁 , 𝑡) 𝑖(𝜁, 𝑡) d𝜁 . (11)

In the limit process, sequences of elementary quantities {𝑣𝑘 (𝑡)}𝑘∈{1,...,𝑁 } and {𝑖𝑘 (𝑡)}𝑘∈{1,...,𝑁 }
become spatially distributed quantities 𝑣 = 𝑣(𝑥, 𝑡) and 𝑖 = 𝑖(𝑥, 𝑡), 𝑥 ∈ (𝑎, 𝑏), 𝑡 > 0, while{
ΔE𝑘 (𝑡 )
Δ𝑥𝑘

}
𝑘∈{1,...,𝑁 }

and
{
Δ𝜙𝑘 (𝑡 )
Δ𝑥𝑘

}
𝑘∈{1,...,𝑁 }

become electromotive force and magnetic flux per-unit-
length, defined by

E(𝑥, 𝑡) = lim
Δ𝑥𝑘→0

ΔE𝑘 (𝑡)
Δ𝑥𝑘

and 𝜙(𝑥, 𝑡) = lim
Δ𝑥𝑘→0

Δ𝜙𝑘 (𝑡)
Δ𝑥𝑘

.

Similarly, model parameters per-unit-length: series resistance and inductance, shunt capacitance
and conductance, as well the cross-inductivity kernel are defined by

𝑅(𝑥, 𝑡) = lim
Δ𝑥𝑘→0

Δ𝑅𝑘 (𝑡)
Δ𝑥𝑘

, 𝐿(𝑥, 𝑡) = lim
Δ𝑥𝑘→0

Δ𝐿𝑘 (𝑡)
Δ𝑥𝑘

,

𝐶 (𝑥, 𝑡) = lim
Δ𝑥𝑘→0

Δ𝐶𝑘 (𝑡)
Δ𝑥𝑘

, 𝐺 (𝑥, 𝑡) = lim
Δ𝑥𝑘→0

Δ𝐺𝑘 (𝑡)
Δ𝑥𝑘

, 𝑚(𝑥, 𝜁 , 𝑡) = lim
Δ𝑥𝑘→0
Δ𝑥 𝑗→0

Δ2𝑚𝑘 𝑗 (𝑡)
Δ𝑥𝑘 Δ𝑥 𝑗

.

Note that in the limit process finite differences become partial derivatives, while the sum becomes
integral over the entire transmission line.

The magnetic flux accounting for non-local effects, assumed in the form (11), is a superposition
of local and non-local magnetic fluxes, i.e.,

𝜙 = 𝜙L + 𝜙NL, with 𝜙L(𝑥, 𝑡) = 𝐿 𝑖(𝑥, 𝑡) and 𝜙NL(𝑥, 𝑡) =
∫ 𝑏

𝑎

𝑚(𝑥, 𝜁) 𝑖(𝜁, 𝑡) d𝜁, (12)

where 𝜙NL is given constitutively through the cross-inductivity kernel 𝑚. In order to account for
the non-locality assumption, i.e., assumption that the influence of physical quantity, measured at
neighboring points 𝜁 of point 𝑥, on the physical quantity measured at point 𝑥 depends on their
distance |𝑥 − 𝜁 | and assuming that the influence should decrease as the distance between points
increases, the cross-inductivity kernel is assumed as a decreasing function depending on |𝑥 − 𝜁 |,
i.e., 𝑚(𝑥, 𝜁) = 𝑚( |𝑥 − 𝜁 |). The non-locality assumption is inspired by the Neumann formula
for calculating the cross-inductivity corresponding to two contours, where the infinitesimal cross-
inductivity is inversely proportional to the distance between two elementary contours, see [18].

Several choices for the cross-inductivity kernel are given in Table 1. Each of the cross-
inductivity kernels from Table 1 reduce to the Dirac distribution, transforming the non-local mag-
netic flux into the local one, so that flux, given by (12), becomes 𝜙 = (𝐿 +𝑀) 𝑖. On the other hand,
the non-local flux is zero if cross-inductivity kernel 𝑚 is either chosen to be zero, or in the limiting
case when non-locality parameter ℓ tends to infinity, so that, by (12), the flux reduces to 𝜙 = 𝐿 𝑖.

Constitutive equation determining the non-local magnetic flux, corresponding to the power
type cross-inductivity kernel, is given through the symmetrized fractional integral, since

𝜙NL(𝑥, 𝑡) =
𝑀

2ℓ𝛼
(
𝑎 𝐼

𝛼
𝑥 + 𝑥 𝐼

𝛼
𝑏

)
𝑖(𝑥, 𝑡),

5



P
o
S
(
B
P
U
1
1
)
1
6
9

Modelling hereditary and nonlocal transmission lines Dušan Zorica

Table 1: Several choices of cross-inductivity kernels.

Kernel type 𝑚( |𝑥 − 𝜁 |) 𝑀𝛿( |𝑥 − 𝜁 |)
Power 𝑀

2Γ (𝛼)
|𝑥−𝜁 |𝛼−1

ℓ𝛼
as 𝛼 → 0

Exponential 𝑀
2ℓ e−

|𝑥−𝜁 |
ℓ as ℓ → 0

Gaussian 𝑀

ℓ
√
𝜋

e−
|𝑥−𝜁 |2

ℓ2 as ℓ → 0

Model parameters are: cross-inductivity per-unit-length
𝑀 , non-locality parameter (characteristic length) ℓ, and
𝛼 ∈ (0, 1).

where

𝑎 𝐼
𝛼
𝑥 𝑓 (𝑥) =

1
Γ(𝛼)

∫ 𝑥

𝑎

𝑓 (𝜁)
(𝑥 − 𝜁)1−𝛼

d𝜁 and 𝑥 𝐼
𝛼
𝑏 𝑓 (𝑥) =

1
Γ(𝛼)

∫ 𝑏

𝑥

𝑓 (𝜁)
(𝜁 − 𝑥)1−𝛼

d𝜁

are, respectively, left and right fractional integrals, see [8, 16]. The non-local magnetic flux

𝜙NL(𝑥, 𝑡) =
𝑀

2ℓ

∫ 𝑏

𝑎

e−
|𝑥−𝜁 |

ℓ 𝑖(𝜁, 𝑡) d𝜁,

corresponding to the exponential type cross-inductivity kernel, is a solution of the differential
equation

𝜙NL(𝑥, 𝑡) − ℓ2 𝜕
2

𝜕𝑥2 𝜙NL(𝑥, 𝑡) = 𝑀𝑖(𝑥, 𝑡),

known as Eringen’s stress gradient constitutive equation [17], widely used in modeling non-local
effects in continuum mechanics.

2.2 Derivation of hereditary telegrapher’s equations

The generalization of transmission line model whose elementary circuit is shown in Figure
2 includes fractional-order inductive (Δ𝐿) and capacitive (Δ𝐶𝑅, Δ𝐶) elements. We assume that
the hereditariness of magnetization and polarization processes is quite prominent and therefore the
connection between magnetic flux and current in coil, as well as connection between charge and
voltage in capacitor, are modeled through the Riemann-Liouville fractional integral, i.e., we assume
that the hereditariness kernel is the power type function. Such obtained flux is connected with
coil voltage trough the Faraday law and charge is connected with capacitor current by definition,
yielding that coil voltage and current, as well as capacitor current and voltage, are related trough
the Riemann-Liouville fractional derivative.

Regarding the coil, since we want to include the memory effects, instead of the classical
connection between magnetic flux 𝜙 and electric current 𝑖, established through inductance 𝐿 and
given by 𝜙 = 𝐿𝑖𝐿 , we shall use

𝜙 (𝑡) = 𝐿 0I1−𝜉
𝑡 𝑖𝐿 (𝑡) , 𝑡 > 0, 𝜉 ∈ (0, 1) ,

where 𝐿 is the (fractional) inductance and 0I1−𝜉
𝑡 denotes the operator of Riemann-Liouville frac-

tional integration (3). Using the Faraday law of electromagnetic induction, we obtain

𝑢𝐿 (𝑡) = d𝜙 (𝑡)
d𝑡

= 𝐿
d
d𝑡 0I1−𝜉

𝑡 𝑖𝐿 (𝑡) = 𝐿 0D𝜉
𝑡 𝑖𝐿 (𝑡) , 𝑡 > 0, 𝜉 ∈ (0, 1) , (13)
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for the voltage of the coil, where 0D𝛼
𝑡 stands for the Riemann-Liouville derivative of order𝛼 ∈ (0, 1) ,

defined by (2). Similar constitutive equation is used in [14] in modelling magnetic core coils. Note
that fractional-order coil model (13) describes the element with performance between resistor and
inductor. Indeed, such element can be seen as a series connection between a frequency-dependent
resistor and a classical coil with frequency-dependent inductance.

The hereditariness will also be included by modelling capacitor in the framework of the
fractional calculus. Namely, instead of the classical connection between the charge 𝑞 and voltage
𝑢𝐶 , given by 𝑞 = 𝐶𝑢𝐶 , where 𝐶 is the capacitance, we use

𝑞 (𝑡) = 𝐶 0I1−𝜉
𝑡 𝑢𝐶 (𝑡) , 𝑡 > 0, 𝜉 ∈ (0, 1) ,

so that
𝑖𝐶 (𝑡) = d

d𝑡
𝑞 (𝑡) = 𝐶 d

d𝑡 0I1−𝜉
𝑡 𝑢𝐶 (𝑡) = 𝐶 0D𝜉

𝑡 𝑢𝐶 (𝑡) , 𝑡 > 0, 𝜉 ∈ (0, 1) , (14)

where 𝐶 is the (fractional) capacitance. In particular, fractional-order constitutive equation for
capacitor is used in [4, 5, 7, 10, 11] describing electrochemical double-layer capacitors (EDLC), also
known as super-capacitors or ultra-capacitors, with different assumptions on equivalent electrical
scheme. Note that fractional-order capacitor model (14) describes the element with performance
between conductor and capacitor, in the sense that it is equivalent to a parallel connection between
frequency-dependent resistor and a classical capacitor with frequency-dependent capacitance.

Electrical circuits containing fractional order elements are considered in [6, 15], while in [9]
skin effect is modelled using fractional-order coils and resistors. Fractional-order models for circuit
elements are used to analyze 𝑅𝐿𝐶 filters in [12, 13].

In order to formulate the mathematical model of the transmission line, modeled by elementary
circuit shown in Figure 2, we use the first Kirchhoff law for the points 𝐷, 𝐸 and 𝐹, as well as the
second Kirchhoff law for the elementary circuit, to obtain

𝑖1 =
𝑢𝑅𝐶

Δ𝑅
+ 𝑖𝐶𝑅

, 𝑖1 = 𝑖2 + 𝑖3, 𝑖3 = 𝑖𝐶 + Δ𝐺𝑢2, (15)

𝑢𝐿 + 𝑢𝑅𝐶 + 𝑢2 − 𝑢1 = 0, (16)

respectively. According to (13) and (14), we have

𝑢𝐿 = Δ𝐿 0D𝛼
𝑡 𝑖1, 𝑖𝐶𝑅

= Δ𝐶𝑅 0D𝛽
𝑡 𝑢𝑅𝐶 , 𝑖𝐶 = Δ𝐶 0D𝛾

𝑡 𝑢2.

Taking into account that the model shown in Figure 2 is the spatial discretization of the real material
and that the unit cell ranges from 𝑥 to 𝑥 + Δ𝑥, we write

𝑖1 = 𝑖 (𝑥, 𝑡) , 𝑖2 = 𝑖 (𝑥 + Δ𝑥, 𝑡) , 𝑢1 = 𝑢 (𝑥, 𝑡) , 𝑢2 = 𝑢 (𝑥 + Δ𝑥, 𝑡) ,

so that system (15), (16) becomes

Δ𝑅𝑖 (𝑥, 𝑡) = 𝑢𝑅𝐶 (𝑥, 𝑡) + Δ𝑅Δ𝐶𝑅 0D𝛽
𝑡 𝑢𝑅𝐶 (𝑥, 𝑡) , (17)

𝑖 (𝑥 + Δ𝑥, 𝑡) − 𝑖 (𝑥, 𝑡) = −Δ𝐶 0D𝛾
𝑡 𝑢 (𝑥 + Δ𝑥, 𝑡) − Δ𝐺𝑢 (𝑥 + Δ𝑥, 𝑡) , (18)

𝑢 (𝑥 + Δ𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) = −Δ𝐿 0D𝛼
𝑡 𝑖 (𝑥, 𝑡) − 𝑢𝑅𝐶 (𝑥, 𝑡) . (19)
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In order to write the equations for the material itself, we have to pass to the continuum. This will
be done in two steps. As the first step, we divide the equations (17) - (19) with Δ𝑥 and obtain

Δ𝑅

Δ𝑥
𝑖 (𝑥, 𝑡) = 𝑢𝑅𝐶 (𝑥, 𝑡)

Δ𝑥
+ Δ𝑅Δ𝐶𝑅 0D𝛽

𝑡

𝑢𝑅𝐶 (𝑥, 𝑡)
Δ𝑥

, (20)

𝑖 (𝑥 + Δ𝑥, 𝑡) − 𝑖 (𝑥, 𝑡)
Δ𝑥

= −Δ𝐶
Δ𝑥

0D𝛾
𝑡 𝑢 (𝑥 + Δ𝑥, 𝑡) − Δ𝐺

Δ𝑥
𝑢 (𝑥 + Δ𝑥, 𝑡) , (21)

𝑢 (𝑥 + Δ𝑥, 𝑡) − 𝑢 (𝑥, 𝑡)
Δ𝑥

= −Δ𝐿
Δ𝑥

0D𝛼
𝑡 𝑖 (𝑥, 𝑡) −

𝑢𝑅𝐶 (𝑥, 𝑡)
Δ𝑥

. (22)

In the second step, we introduce the model parameters: inductance, resistance, capacitance and
conductance by-length respectively by

𝐿 = lim
Δ𝑥→0

Δ𝐿

Δ𝑥
, 𝑅 = lim

Δ𝑥→0

Δ𝑅

Δ𝑥
, 𝐶 = lim

Δ𝑥→0

Δ𝐶

Δ𝑥
, 𝐺 = lim

Δ𝑥→0

Δ𝐺

Δ𝑥
.

The generalized time-fractional model of transmission line is represented by system of equations

𝑅𝑖 (𝑥, 𝑡) = 𝑢′ (𝑥, 𝑡) + 𝜏 0D𝛽
𝑡 𝑢

′ (𝑥, 𝑡) , (23)
𝜕

𝜕𝑥
𝑖 (𝑥, 𝑡) = −𝐶 0D𝛾

𝑡 𝑢 (𝑥, 𝑡) − 𝐺𝑢 (𝑥, 𝑡) , (24)

𝜕

𝜕𝑥
𝑢 (𝑥, 𝑡) = −𝐿 0D𝛼

𝑡 𝑖 (𝑥, 𝑡) − 𝑢′ (𝑥, 𝑡) , (25)

that is obtained by letting Δ𝑥 → 0 in system (20) - (22), where

𝑢′ (𝑥, 𝑡) = lim
Δ𝑥→0

𝑢𝑅𝐶 (𝑥, 𝑡)
Δ𝑥

is the voltage by-length and

𝜏 =
𝑅

𝑊𝑅

=
limΔ𝑥→0

Δ𝑅
Δ𝑥

limΔ𝑥→0
Δ𝑊𝑅

Δ𝑥

= lim
Δ𝑥→0

Δ𝑅
Δ𝑥

Δ𝑊𝑅

Δ𝑥

= lim
Δ𝑥→0

Δ𝑅

Δ𝑊𝑅

= lim
Δ𝑥→0

(Δ𝑅Δ𝐶𝑅) ,

where we used Δ𝑊𝑅 = 1
Δ𝐶𝑅

.

3. Analytical solution of nonlocal and hereditary telegrapher’s equations

3.1 Analytical solution of nonlocal telegrapher’s equations

Non-local telegrapher’s equations (9) - (11), modeling transmission line subject to external
forcing, for infinite spatial domain and constant model parameters can be rewritten as

− 𝜕

𝜕𝑥
𝑣(𝑥, 𝑡) = 𝑅 𝑖(𝑥, 𝑡) + 𝜕

𝜕𝑡
𝜙(𝑥, 𝑡) − E(𝑥, 𝑡), (26)

− 𝜕

𝜕𝑥
𝑖(𝑥, 𝑡) = 𝐺 𝑣(𝑥, 𝑡) + 𝐶 𝜕

𝜕𝑡
𝑣(𝑥, 𝑡), (27)

𝜙(𝑥, 𝑡) = 𝐿 𝑖(𝑥, 𝑡) + 𝑚( |𝑥 |) ∗𝑥 𝑖(𝑥, 𝑡), (28)

since in this case the integral in non-local magnetic flux (12) is represented by the convolution with
respect to the spatial coordinate

𝜙NL(𝑥, 𝑡) = 𝑚( |𝑥 |) ∗𝑥 𝑖(𝑥, 𝑡) = 𝑀
∫ ∞

−∞
𝑚̄( |𝑥 − 𝜁 |) 𝑖(𝜁, 𝑡) d𝜁, (29)
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with 𝑚̄ denoting the normalized cross-inductivity kernel defined by 𝑚̄ = 𝑚
𝑀

.
Expressing the non-local flux in terms of convolution is in accordance with the assumption

that the influence of the neighboring points 𝜁 of point 𝑥 depend on their distance |𝑥 − 𝜁 |, which
implies the suitability of cross-inductivity kernels from Table 1, see (29). The Fourier transform of
cross-inductivity kernels, along with their behavior in limiting cases is given in Table 2.

Table 2: Fourier transform of cross-inductivity kernels.

Kernel type 𝑚̄( |𝑥 |) ˜̄𝑚( |𝜉 |) lim
𝜉→0

˜̄𝑚( |𝜉 |) lim
𝜉→∞

˜̄𝑚( |𝜉 |)

Power |𝑥 |𝛼−1

2Γ (𝛼)ℓ𝛼
cos 𝛼𝜋

2
|ℓ 𝜉 |𝛼 ∞ 0

Exponential 1
2ℓ e−

|𝑥 |
ℓ

1
1+(ℓ 𝜉 )2 1 0

Gaussian 1
ℓ
√
𝜋

e−
|𝑥 |2
ℓ2 e−

(
ℓ 𝜉

2

)2

1 0

The analytical solution of non-local telegrapher’s equations (26) - (28) is determined for zero
initial voltage and magnetic flux (current) by the use of integral transform method. The voltage, as
a solution of non-local telegrapher’s equations (26) - (28), is obtained as a convolution of solution
kernel 𝑄 and electromotive force E in both space and time, taking the form

𝑣(𝑥, 𝑡) = 𝑄(𝑥, 𝑡) ∗𝑥,𝑡 E(𝑥, 𝑡),

with convolution in time given by 𝑓 (𝑡) ∗𝑡 𝑔(𝑡) =
∫ 𝑡

0 𝑓 (𝜏) 𝑔(𝑡 − 𝜏) d𝜏. The solution kernel 𝑄 takes
the following form

𝑄(𝑥, 𝑡) = 𝑐2

𝜋

(∫ 𝜉1

0

sinh(𝜈(𝜉) 𝑡)
𝜈(𝜉) e−𝜇 ( 𝜉 ) 𝑡

𝜉 sin(𝜉𝑥)
1 + 𝜏𝑀

𝜏𝐿
˜̄𝑚( |𝜉 |)

d𝜉

+
∫ 𝜉2

𝜉1

𝑓 (𝜉, 𝑡) e−𝜇 ( 𝜉 ) 𝑡
𝜉 sin(𝜉𝑥)

1 + 𝜏𝑀
𝜏𝐿

˜̄𝑚( |𝜉 |)
d𝜉 +

∫ ∞

𝜉2

sin(𝜔(𝜉) 𝑡)
𝜔(𝜉) e−𝜇 ( 𝜉 ) 𝑡

𝜉 sin(𝜉𝑥)
1 + 𝜏𝑀

𝜏𝐿
˜̄𝑚( |𝜉 |)

d𝜉

)
,

since 𝜈2(𝜉) ≥ 0 if 𝜉 → 0 and 𝜈2(𝜉) < 0 if 𝜉 → ∞, while 𝜈2(𝜉) may change sign if 𝜉 ∈ (𝜉1, 𝜉2),
where the involved functions are defined as follows

𝜇(𝜉) = 1
2

(
1

𝜏𝐿 + 𝜏𝑀 ˜̄𝑚( |𝜉 |)
+ 1
𝜏𝐶

)
,

𝜈2(𝜉) =
(
1
2

(
1

𝜏𝐿 + 𝜏𝑀 ˜̄𝑚( |𝜉 |)
− 1
𝜏𝐶

))2
− 1
𝜏𝐶

(
𝜏𝐿 + 𝜏𝑀 ˜̄𝑚( |𝜉 |)

) (
𝜉

𝐾

)2

=

(
1
2

(
1

𝜏𝐿 + 𝜏𝑀 ˜̄𝑚( |𝜉 |)
− 1
𝜏𝐶

))2
− (𝑐𝜉)2

1 + 𝜏𝑀
𝜏𝐿

˜̄𝑚( |𝜉 |)
, with 𝑐 =

1
𝐾
√
𝜏𝐿𝜏𝐶

,

𝑓 (𝜉, 𝑡) = e𝜈 ( 𝜉 ) 𝑡 − e−𝜈 ( 𝜉 ) 𝑡

2𝜈(𝜉) =


sinh(𝜈(𝜉) 𝑡)

𝜈(𝜉) , if 𝜈2(𝜉) ≥ 0,

sin(𝜔(𝜉) 𝑡)
𝜔(𝜉) , if 𝜈2(𝜉) < 0, with 𝜔(𝜉) = ,𝜈(𝜉)ג−
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containing the static attenuation coefficient together with time constants:

𝐾 =
√
𝑅𝐺, 𝜏𝐿 =

𝐿

𝑅
, 𝜏𝑀 =

𝑀

𝑅
, and 𝜏𝐶 =

𝐶

𝐺
.

Note, the function 𝜈2 (𝜉) , defined by (23), may be either positive or negative depending on the
value of variable 𝜉 ∈ [0,∞), implying that a real valued function function 𝑓 has two forms: one for
𝜈2 (𝜉) ≥ 0 and the other for 𝜈2 (𝜉) < 0, since then one switches to a real valued function 𝜔2 = −𝜈2.

3.2 Analytical solution of hereditary telegrapher’s equations

In the sequel, the initial-boundary value problem on the half axis, 𝑥 ∈ [0,∞) , for time 𝑡 > 0,
corresponding to system of equations (23) - (25) will be solved and therefore it is subject to initial

𝑢′(𝑥, 0) = 0, 𝑖(𝑥, 0) = 0, and 𝑢(𝑥, 0) = 0, 𝑥 ∈ [0,∞) , (30)

and boundary conditions

𝑢 (0, 𝑡) = 𝑢0 (𝑡) and lim
𝑥→∞

𝑢 (𝑥, 𝑡) = 0, 𝑡 > 0. (31)

System of equations (23) - (25), subject to (30) and (31), after introduction of dimensionless
quantities

𝑇 =

(
𝐶

𝐺

) 1
𝛾

, ℓ =
1

√
𝐿𝐺

(
𝐶

𝐺

) 𝛼
2𝛾

, 𝑡 =
𝑡

𝑇
, 𝑥 =

𝑥

ℓ
, 𝜏 = 𝜏

(
𝐺

𝐶

) 𝛽

𝛾

,

𝑢̄ =
𝑢

𝑈
, 𝑢̄′ =

ℓ

𝑈
𝑢′, 𝐼 = 𝑈

√︂
𝐺

𝐿

(
𝐶

𝐺

) 𝛼
2𝛾

, 𝚤 =
𝑖

𝐼
,

where 𝑈 is the nominal value of voltage 𝑢0 at the boundary, see (31)1, and after omitting the bars
over dimensionless quantities becomes

𝑅

𝐿

(
𝐶

𝐺

) 𝛼
𝛾

𝑖 (𝑥, 𝑡) = 𝑢′ (𝑥, 𝑡) + 𝜏 0D𝛽
𝑡 𝑢

′ (𝑥, 𝑡) , (32)

𝜕

𝜕𝑥
𝑖 (𝑥, 𝑡) = −0D𝛾

𝑡 𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) , (33)

𝜕

𝜕𝑥
𝑢 (𝑥, 𝑡) = −0D𝛼

𝑡 𝑖 (𝑥, 𝑡) − 𝑢′ (𝑥, 𝑡) , (34)

subject to (dimensionless) initial

𝑢′(𝑥, 0) = 0, 𝑖(𝑥, 0) = 0, and 𝑢(𝑥, 0) = 0, 𝑥 ∈ [0,∞) , (35)

and (dimensionless) boundary conditions

𝑢 (0, 𝑡) = 𝑢0 (𝑡) and lim
𝑥→∞

𝑢 (𝑥, 𝑡) = 0, 𝑡 > 0. (36)

The solution to (32) - (34), with (35) and (36), is obtained by the method of Laplace transform
as

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑡) ∗ 𝑢𝛿 (𝑥, 𝑡) ,
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where
𝑢𝛿 = L−1

[
e−𝑘 (𝑠)𝑥

]
is the impulse response (inversion of the transfer function), i.e., the response voltage to the boundary
voltage assumed as a Dirac 𝛿-distribution, involving the function

𝑘 (𝑠) =
√︁
𝜓 (𝑠) (37)

𝜓 (𝑠) =
(
𝑠𝛼+𝛽 + 𝑎𝑠𝛼 + 𝑏

)
(𝑠𝛾 + 1)

𝑠𝛽 + 𝑎 ,

with 𝑎 = 1
𝜏

and 𝑏 = 𝑅
𝜏𝐿

(
𝐶
𝐺

) 𝛼
𝛾

.

The form of the impulse response depends on the nature, number, and position of branching
points of the function 𝑘 , given by (37), so that in the case when 𝑘 either has no branching points in
addition to the point 𝑠 = 0, or has a negative real branching point, the impulse response takes the
form

𝑢
(I)
𝛿
(𝑥, 𝑡) = 1

2𝜋i

∫ ∞

0

(
e−𝑘(𝜌e−i𝜋)𝑥 − e−𝑘(𝜌ei𝜋)𝑥

)
e−𝜌𝑡d𝜌.

On the other hand, if there are complex conjugated branching points of 𝑘 having negative real part,
denoted 𝑠0 = 𝜌0ei𝜑0 and 𝑠0, the impulse response takes the form

𝑢
(II)
𝛿

(𝑥, 𝑡) = 1
2𝜋i

∫ ∞

0

(
e−𝑘(𝜌ei𝜑0)𝑥ei(𝜑0+𝜌𝑡 sin 𝜑0 ) − e−𝑘(𝜌e−i𝜑0)𝑥e−i(𝜑0+𝜌𝑡 sin 𝜑0 )

)
e𝜌𝑡 cos 𝜑0d𝜌.
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