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equations. The idea is to consider that the independent discrete variable of the analysed equation
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Coupled discrete solitonic equations of aB system and the periodic reduction Corina N. Babalic

1. Introduction

Intensively studied since the seventies, the Volterra type systems, introduced by Hirota and
Satsuma [1–3], are still a subject of interest today from different points of view [4–7]. One of them is
given by the integrable extensions of the Volterra systems, known in literature as the Bogoyavlensky
lattices [8–11]. Three such integrable extensions where recently investigated from the singularity
analysis and bilinear integrability point of view in [12], more precisely: the additive Bogoyavlensky
equation (aB), the first multiplicative Bogoyavlensky equation (mB2) and the second multiplicative
Bogoyavlensky equation (mB2).

In this paper we go a step forward, analysing the first of the above equations, but extended into
a multicomponent additive Bogoyavlensky system with any 𝑀 coupled equations with branched
dispersion relation. The investigation starts with the particular case known as the coupled Lotka
Volterra system and continues with the most general case. For proving complete integrability of
analysed systems we use the well known tool called the Hirota bilinear formalism [13–15], and for
extending an integrable 2D-lattice to a coupled integrable system we apply the periodic reduction
[16, 17]. The particular and central feature of such coupled systems is the structure of the phases
of the components which are parametrized by the order 𝑀 roots of unity, and the structure of the
dispersion relation which has multiple branches and allows more freedom in the soliton interactions.

The paper is organized as follows: after a brief introduction, in Chapter 2 we discuss a
generalisation of the additive Bogoyavlensky model to the multicomponent (matrix) case and find
the multisoliton solutions for a 𝑀-component Lotka-Volterra system (𝑁 = 1), while in Chapter 3 we
study the general case (∀ 𝑁) and construct the N-soliton solution, proving complete integrability.
Also, in the same chapter, we show that starting from a two-dimensional additive Bogoyavlensky
equation, with two discrete independent variables, one can obtain the same multisoliton solution
through the periodic reduction tool [18]. In Chapter 4 we summarize our conclusions.

2. The coupled semidiscrete aB system

The coupled semidiscrete additive Bogoyavlensky system with branched dispersion:

𝑑

𝑑𝑡
𝑄𝑛 (𝑡) = 𝑄𝑛

©«
𝑁∑︁
𝑗=1

𝐸
𝑗
𝜎1𝑄𝑛+ 𝑗 (𝑡)𝐸 𝑗

𝜎2 −
𝑁∑︁
𝑗=1

𝐸
𝑗
𝜎2𝑄𝑛− 𝑗 (𝑡)𝐸 𝑗

𝜎1
ª®¬ , (1)

where 𝑄𝑛 (𝑡) = 𝑄(𝑛, 𝑡) is a diagonal matrix of complex functions 𝑢a (𝑛, 𝑡), a = 1, 𝑀:

𝑄𝑛 (𝑡) =

©«

𝑢1(𝑛, 𝑡) 0 0 ...... 0
0 𝑢2(𝑛, 𝑡) 0 ...... 0
0 0 𝑢3(𝑛, 𝑡) ...... 0
.... .... .... ..... ......

0 0 0 ...... 𝑢𝑀 (𝑛, 𝑡)

ª®®®®®®¬
and 𝐸𝜎1 ,𝐸𝜎2 are permutation matrices corresponding to the following permutations:

𝜎1 =

(
1 2 . . . . 𝑀

2 3 . . . . 1

)
, 𝜎2 =

(
1 2 . . . . 𝑀

𝑀 1 2 . . . 𝑀 − 1

)
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can be written on components in the following form:

¤𝑢1 = 𝑢1

(
𝑢2+

(2)
𝑢3 +..+

(𝑁 )
𝑢𝑁+1 −𝑢𝑀 − 𝑢𝑀−1

(2)
− .. − 𝑢𝑀−𝑁+1

(𝑁 )

)
(2)

¤𝑢2 = 𝑢2

(
𝑢3+

(2)
𝑢4 +..+

(𝑁 )
𝑢𝑁+2 −𝑢1 − 𝑢𝑀

(2)
− .. − 𝑢𝑀−𝑁+2

(𝑁 )

)
... = ...............

¤𝑢𝑀−1 = 𝑢𝑀−1

(
𝑢𝑀+

(2)
𝑢1 +..+

(𝑁 )
𝑢𝑀+𝑁−1 −𝑢𝑀−2 − 𝑢𝑀−3

(2)
− .. − 𝑢𝑀−𝑁−1

(𝑁 )

)
¤𝑢𝑀 = 𝑢𝑀

(
𝑢1+

(2)
𝑢2 +..+

(𝑁 )
𝑢𝑀+𝑁 −𝑢𝑀−1 − 𝑢𝑀−2

(2)
− .. − 𝑢𝑀−𝑁

(𝑁 )

)
where we denoted:

𝑢a (𝑛 + 1) = 𝑢a , 𝑢a (𝑛 + 2) =
(2)
𝑢a , 𝑢a (𝑛 + 𝑁) =

(𝑁 )
𝑢a , a = 1, 𝑀

𝑢a (𝑛 − 1) = 𝑢a , 𝑢a (𝑛 − 2) = 𝑢a
(2)
, 𝑢a (𝑛 − 𝑁) = 𝑢a

(𝑁 )
.

For 𝑀 = 1 and 𝑁 = 1, system (2) reduces to the well known Lotka-Volterra equation [11]:

¤𝑢1 = 𝑢1(𝑢1 − 𝑢1).

In order to prove complete integrability for the general case of coupled aB system (2) for any M, we
are going to use the Hirota bilinear formalism. The existence of an infinite number of independent
integrals in involution, computed from the Lax pair [19, 20], is a commune proof of complete
integrability for a partial discrete equation. There are several other criteria and techniques used for
investigating integrability such as: complexity growth, singularity confinement, cube consistency,
Lie symmetry approach [21] and for constrained systems and gauge theories, the Becchi-Rouet-
Stora-Tyutin (BRST) technique [22] can be applied. But we will not use these approaches on the
integrability concept, but the Hirota alternative formulation, which requires the existence of general
multisoliton solution. In other words, the proof of complete integrability in Hirota formalism is the
construction of a solution describing multiple collisions of an arbitrary number of solitons having
arbitrary parameters and phases, considering all branches of dispersion relations.

2.1 The coupled semidiscrete Lotka-Volterra system

For any 𝑀 and 𝑁 = 1, on the components, system (2) becomes coupled semidiscrete Lotka-
Volterra system [23, 24] and has the following expression:

¤𝑢1 = 𝑢1(𝑢2 − 𝑢𝑀 )
¤𝑢2 = 𝑢2(𝑢3 − 𝑢1)

.....

¤𝑢𝑀−1 = 𝑢𝑀−1(𝑢𝑀 − 𝑢𝑀−2) (3)
¤𝑢𝑀 = 𝑢𝑀 (𝑢1 − 𝑢𝑀−1)

3



P
o
S
(
B
P
U
1
1
)
1
7
0

Coupled discrete solitonic equations of aB system and the periodic reduction Corina N. Babalic

where:
𝑢a = 𝑢a (𝑛, 𝑡), 𝑢a = 𝑢a (𝑛 + 1, 𝑡), 𝑢a = 𝑢a (𝑛 − 1, 𝑡), a = 1, 𝑀.

In order to check integrability of (3), we apply the Hirota bilinear fomalism. Using the nonlinear
substitution:

𝑢a (𝑛, 𝑡) = 1 + 𝜕

𝜕𝑡
ln

𝐹a+1
𝐹a

, a = 1, 𝑀 (4)

where 𝐹a = 𝐹a (𝑛, 𝑡), 𝐹a = 𝐹a (𝑛 + 1, 𝑡), we cast (3), which can be written in a compact manner as:

¤𝑢a = 𝑢a (𝑢a+1 − 𝑢a+𝑀−1), a = 1, 𝑀, (5)

into the Hirota bilinear form:

Dt𝐹a+1 · 𝐹a + 𝐹a+1𝐹a =

(2)
𝐹a+2 𝐹a+𝑀−1, (6)

where
(2)
𝐹a= 𝐹a (𝑛 + 2, 𝑡), 𝐹a = 𝐹a (𝑛 − 1, 𝑡), 𝐹a (𝑛, 𝑡) is a complex function and 𝐷𝑡 is the Hirota

bilinear operator [15] defined as:

𝐷𝑛
𝑡 𝑎(𝑡) · 𝑏(𝑡) = (𝜕𝑡 − 𝜕𝑡 ′)𝑛𝑎(𝑡)𝑏(𝑡′) |𝑡=𝑡 ′ . (7)

In order to build the 1-soliton solutions (1-ss) for coupled Lotka-Volterra system (3), we
consider the ansatz:

𝐹a = 1 + 𝜖a−1
1 𝑒[1 , a = 1, 𝑀, (8)

where [1 = 𝑘1𝑛+𝜔1𝑡+[ (0)1 , 𝑘1 is the wave number, 𝜔1 is the angular frequency and [ (0)1 an arbitrary
phase. The dispersion has 𝑀 possible branches of dispersion for the soliton:

𝜔1(𝑘1)=2

[
𝜖2

1 + 1
2𝜖1

sinh 𝑘1 +
𝜖2

1 − 1
2𝜖1

cosh 𝑘1

]
, 𝜖1 ∈

{
𝑒𝑙

2𝜋𝑖
𝑀

}
, 𝑙 = 1, 𝑀.

The 2-ss has the form:

𝐹a = 1 + 𝜖a−1
1 𝑒[1 + 𝜖a−1

2 𝑒[2 + 𝜖a−1
1 𝜖a−1

2 𝑒[1+[2+𝐴12 , a = 1, 𝑀 (9)

where:
[ 𝑗 = 𝑘 𝑗𝑛 + 𝜔 𝑗 𝑡 + [

(0)
𝑗
, 𝑗 = 1, 2 ,

and the interaction phase is given by:

𝑒𝐴12 =
(𝑒𝑘2𝜖2 − 𝑒𝑘1𝜖1)
(𝑒𝑘1+𝑘2𝜖1𝜖2 − 1)2 ,

with 𝑀 possible branches of dispersion for each of the 2 solitons:

𝜔 𝑗 (𝑘 𝑗) = 2

[
𝜖2
𝑗
+ 1

2𝜖 𝑗
sinh 𝑘 𝑗 +

𝜖2
𝑗
− 1

2𝜖 𝑗
cosh 𝑘 𝑗

]
, 𝜖 𝑗 ∈

{
𝑒𝑙

2𝜋𝑖
𝑀

}
, 𝑙 = 1, 𝑀, 𝑗 = 1, 2.
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The N -soliton solution for the coupled Lotka-Volterra system with any number of equations,
given in (3), has the following expressions for 𝐹a , (a = 1, 𝑀):

𝐹a (𝑛, 𝑡) =
∑︁

`1,..,`N={0,1}
exp ©«

N∑︁
𝑖=1

`𝑖 [[𝑖 + (a − 1) ln(𝜖𝑖)] +
N∑︁

1≤𝑖< 𝑗

`𝑖` 𝑗𝐴𝑖 𝑗
ª®¬ , (10)

where:
[ 𝑗 = 𝑘 𝑗𝑛 + 𝜔 𝑗 𝑡 + [

(0)
𝑗
, 𝑗 = 1,N ,

and the interaction term has the form:

𝑒𝐴𝑖 𝑗 =
(𝑒𝑘 𝑗 𝜖 𝑗 − 𝑒𝑘𝑖𝜖𝑖)
(𝑒𝑘𝑖+𝑘 𝑗 𝜖𝑖𝜖 𝑗 − 1)2

with the 𝑀 branches of dispersion for each of theN solitons (𝑘 𝑗 is the wave number of the 𝑗-soliton):

𝜔 𝑗 (𝑘 𝑗)=2

[
𝜖2
𝑗
+ 1

2𝜖 𝑗
sinh 𝑘 𝑗 +

𝜖2
𝑗
− 1

2𝜖 𝑗
cosh 𝑘 𝑗

]
, 𝜖 𝑗 ∈

{
𝑒𝑙

2𝜋𝑖
𝑀

}
, 𝑙 = 1, 𝑀, 𝑗 = 1,N .

The branches of dispersion are labelled by the index 𝑙. The parameter 𝜖 𝑗 which characterizes the
𝑗-soliton ( 𝑗 = 1,N ) can have 𝑀 values, i.e. the order 𝑀 roots of unity.

3. The semidiscrete coupled additive Bogoyavlensky

The semidiscrete coupled additive Bogoyavlensky system given in (2) can be solved in the
same manner as the coupled general Lotka-Volterra system (3). The difference is that for coupled
aB system the parameter 𝑁 can have any natural value, while for coupled Lotka-Volterra it has
𝑁 = 1. There are several important differences that appear in the solution form.

Using the same nonlinear substitution:

𝑢a (𝑛, 𝑡) = 1 + 𝜕

𝜕𝑡
ln

𝐹a+1
𝐹a

, a = 1, 𝑀 (11)

the coupled aB system, which can be written in a compact manner as:

¤𝑢a = 𝑢a (
𝑁∑︁
𝑗=1

𝑢a+ 𝑗 −
𝑁∑︁
𝑗=1

𝑢a+𝑀− 𝑗), a = 1, 𝑀, (12)

becomes in the Hirota bilinear form:

Dt𝐹a+1 · 𝐹a + 𝐹a+1𝐹a =

(𝑁+1)
𝐹a+1+𝑁 𝐹a−𝑁

(𝑁 )
, (13)

where:
(𝑁+1)
𝐹a = 𝐹a (𝑛 + 𝑁 + 1, 𝑡), 𝐹a

(𝑁 )
= 𝐹a (𝑛 − 𝑁, 𝑡)

.

5
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The general N -soliton solutions of coupled additive Bogoyavlensky system is:

𝐹a (𝑛, 𝑡) =
∑︁

`1,..,`N={0,1}
exp ©«

N∑︁
𝑖=1

`𝑖 [[𝑖 + (a − 1) ln(𝜖𝑖)] +
N∑︁

1≤𝑖< 𝑗

`𝑖` 𝑗𝐴𝑖 𝑗
ª®¬ , [ 𝑗 = 𝑘 𝑗𝑛 + 𝜔 𝑗 𝑡 + [

(0)
𝑗

(14)
with the dispersion relation and the interaction phase given by:

𝜔 𝑗 = 2
sinh (𝑘 𝑗+ln 𝜖 𝑗 )𝑁

2 sinh (𝑘 𝑗+𝑙𝑛𝜖 𝑗 ) (𝑁+1)
2

sinh 𝑘 𝑗+ln 𝜖 𝑗

2

, 𝜖 𝑗 ∈
{
𝑒a

2𝜋i
𝑀

}
, 𝑗 = 1,N , a = 1, 𝑀

𝑒𝐴𝑖 𝑗 =
− cosh

𝑘𝑖−𝑘 𝑗+ln 𝜖𝑖
𝜖 𝑗

2 + cosh
(𝑘𝑖−𝑘 𝑗+ln 𝜖𝑖

𝜖 𝑗
) (1+2𝑁 )

2 − (𝜔𝑖 − 𝜔 𝑗) sinh
𝑘𝑖−𝑘 𝑗+ln 𝜖𝑖

𝜖 𝑗

2

− cosh 𝑘𝑖+𝑘 𝑗+ln(𝜖𝑖 𝜖 𝑗 )
2 − cosh (𝑘𝑖+𝑘 𝑗+ln(𝜖𝑖 𝜖 𝑗 ) ) (1+2𝑁 )

2 + (𝜔𝑖 + 𝜔 𝑗) sinh 𝑘𝑖+𝑘 𝑗+ln(𝜖𝑖 𝜖 𝑗 )
2

.

In the particular case when 𝑀 = 1 we obtain the solution presented in [12].

3.1 The semidiscrete aB 2D-lattice

In order to solve the coupled semidiscrete aB system (1):

𝑑

𝑑𝑡
𝑄𝑛 (𝑡) = 𝑄𝑛 (𝑡) ©«

𝑁∑︁
𝑗=1

𝐸
𝑗
𝜎1𝑄𝑛+ 𝑗 (𝑡)𝐸 𝑗

𝜎2 −
𝑁∑︁
𝑗=1

𝐸
𝑗
𝜎2𝑄𝑛− 𝑗 (𝑡)𝐸 𝑗

𝜎1
ª®¬ ,

one could start from the completely integrable semidiscrete aB 2D-lattice (in two discrete dimen-
sions):

𝑑

𝑑𝑡
𝑄𝑛,𝑚(𝑡) = 𝑄𝑛,𝑚(𝑡)

©«
𝑁∑︁
𝑗=1

𝑄𝑛+ 𝑗 ,𝑚+ 𝑗 (𝑡) −
𝑁∑︁
𝑗=1

𝑄𝑛− 𝑗 ,𝑚− 𝑗 (𝑡)
ª®¬ . (15)

Considering 𝑄(𝑛, 𝑚, 𝑡) to be a periodic function only with respect to 𝑚 and imposing periodic
reduction on such coordinate in the 2D-lattice, one could obtain a coupled systems of aB equations.

Now lets consider the periodic 2-reduction on the 𝑚 direction (meaning that 𝑄𝑛,𝑚(𝑡) =

𝑄(𝑛, 𝑚, 𝑡) is a periodic function only with respect to 𝑚, with period 2). We omit writing the
𝑡 dependency for simplicity. This means that:

𝑄(𝑛, 𝑚) ≡ 𝑢1(𝑛), 𝑄(𝑛, 𝑚 + 1) ≡ 𝑢2(𝑛),

𝑄(𝑛, 𝑚 + 2) ≡ 𝑢1(𝑛), 𝑄(𝑛, 𝑚 − 1) ≡ 𝑢2(𝑛).

Introducing this reduction in (15) and denoting:

𝑢1(𝑛 + 1) = 𝑢1, 𝑢1(𝑛 + 2) =
(2)
𝑢1 , 𝑢1(𝑛 + 𝑁) =

(𝑁 )
𝑢1

𝑢1(𝑛 − 1) = 𝑢1, 𝑢1(𝑛 − 2) = 𝑢2
(2)
, 𝑢1(𝑛 − 𝑁) = 𝑢1

(𝑁 )

6
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we get precisely (for 𝑁 even):

¤𝑢1 = 𝑢1

(
𝑢2+

(2)
𝑢1 +..+

(𝑁−1)
𝑢2 +

(𝑁 )
𝑢1 −𝑢2 − 𝑢1

(2)
− .. − 𝑢2

(𝑁−1)
− 𝑢1

(𝑁 )

)
¤𝑢2 = 𝑢2

(
𝑢1+

(2)
𝑢2 +..+

(𝑁−1)
𝑢1 +

(𝑁 )
𝑢2 −𝑢1 − 𝑢2

(2)
− .. − 𝑢1

(𝑁−1)
− 𝑢2

(2)

)
.

For 𝑁 = 1 we obtain coupled Lotka-Volterra system:

¤𝑢1 = 𝑢1

(
𝑢2 − 𝑢2

)
¤𝑢2 = 𝑢2

(
𝑢1 − 𝑢1

)
.

In the same way, if we impose periodic-3 reduction:

𝑄(𝑛, 𝑚) ≡ 𝑢1(𝑛), 𝑄(𝑛, 𝑚 + 1) ≡ 𝑢2(𝑛), 𝑄(𝑛, 𝑚 + 2) ≡ 𝑢3(𝑛),

𝑄(𝑛, 𝑚 + 3) ≡ 𝑢1(𝑛), 𝑄(𝑛, 𝑚 − 1) ≡ 𝑢3(𝑛),

we get the system with the following three coupled equations (for 𝑁 multiple of three):

¤𝑢1 = 𝑢1

(
𝑢2+

(2)
𝑢3 +

(3)
𝑢1 +..+

(𝑁 )
𝑢1 −𝑢3 − 𝑢2

(2)
− 𝑢1

(3)
− .. − 𝑢1

(𝑁 )

)
¤𝑢2 = 𝑢2

(
𝑢3+

(2)
𝑢1 +

(3)
𝑢2 +..+

(𝑁 )
𝑢2 −𝑢1 − 𝑢3

(2)
− 𝑢2

(3)
− .. − 𝑢2

(𝑁 )

)
¤𝑢3 = 𝑢3

(
𝑢1+

(2)
𝑢2 +

(3)
𝑢3 +..+

(𝑁 )
𝑢3 −𝑢2 − 𝑢1

(2)
− 𝑢3

(3)
− .. − 𝑢3

(𝑁 )

)

The coupled aB system comes out from the aB 2D-lattice equation (15) for any 𝑁 , choosing a
periodic 𝑀-reduction on 𝑚.

¤𝑢1 = 𝑢1

(
𝑢2+

(2)
𝑢3 +..+

(𝑁 )
𝑢𝑁+1 −𝑢𝑀 − 𝑢𝑀−1

(2)
− .. − 𝑢𝑀−𝑁+1

(𝑁 )

)
(16)

¤𝑢2 = 𝑢2

(
𝑢3+

(2)
𝑢4 +..+

(𝑁 )
𝑢𝑁+2 −𝑢1 − 𝑢𝑀

(2)
− .. − 𝑢𝑀−𝑁+2

(𝑁 )

)
... = ...............

¤𝑢𝑀−1 = 𝑢𝑀−1

(
𝑢𝑀+

(2)
𝑢1 +..+

(𝑁 )
𝑢𝑀+𝑁−1 −𝑢𝑀−2 − 𝑢𝑀−3

(2)
− .. − 𝑢𝑀−𝑁−1

(𝑁 )

)
¤𝑢𝑀 = 𝑢𝑀

(
𝑢1+

(2)
𝑢2 +..+

(𝑁 )
𝑢𝑀+𝑁 −𝑢𝑀−1 − 𝑢𝑀−2

(2)
− .. − 𝑢𝑀−𝑁

(𝑁 )

)
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3.2 The Hirota bilinear form and multisoliton solutions for aB 2D-lattice

Using the substitution1 𝑄𝑛,𝑚(𝑡) = 1+ 𝜕
𝜕𝑡

ln 𝐹𝑚+1
𝑛+1
𝐹𝑚
𝑛

, we cast the aB 2D-lattice (15) into the Hirota
bilinear form:

Dt𝐹
𝑚+1
𝑛+1 · 𝐹𝑚

𝑛 + 𝐹𝑚+1
𝑛+1 𝐹𝑚

𝑛 = 𝐹𝑚+1+𝑁
𝑛+1+𝑁 𝐹𝑚−𝑁

𝑛−𝑁 , (17)

where 𝐹𝑚
𝑛 is a complex function and 𝐷𝑡 is the Hirota bilinear operator.

The 1-soliton solution is:

𝑢𝑚𝑛 = 1 + 𝜕

𝜕𝑡
log

𝐹𝑚+1
𝑛+1
𝐹𝑚
𝑛

= 1 + 𝜕

𝜕𝑡
log

1 + 𝑒𝑘1 (𝑛+1)+𝑝1 (𝑚+1)+𝜔1𝑡+[ (0)
1

1 + 𝑒𝑘1𝑛+𝑝1𝑚+𝜔1𝑡+[ (0)
1

where:
𝐹𝑚
𝑛 = 1 + 𝑒𝑘1𝑛+𝑝1𝑚+𝜔1𝑡+[ (0)

1 , (∀) 𝑘1, 𝑝1 ∈ C

and the dispersion relation has the form:

𝜔1 = 2
sinh (𝑘1+𝑝1 )𝑁

2 sinh (𝑘1+𝑝1 ) (𝑁+1)
2

sinh 𝑘1+𝑝1
2

.

For the 2-soliton solution we obtain:

𝐹𝑚
𝑛 = 1 + 𝑒[1 + 𝑒[2 + 𝑒[1+[2+𝐴12 ,

where:
[ 𝑗 = 𝑘 𝑗𝑛 + 𝑝 𝑗𝑚 + 𝜔 𝑗 𝑡 + [

(0)
𝑗
, 𝑗 = 1, 2,

with the dispersion relation and interaction phase given by:

𝜔 𝑗 = 2
sinh (𝑘 𝑗+𝑝 𝑗 )𝑁

2 sinh (𝑘 𝑗+𝑝 𝑗 ) (𝑁+1)
2

sinh 𝑘 𝑗+𝑝 𝑗

2

,

𝑒𝐴12 =
− cosh 𝑘1+𝑝1−𝑘2−𝑝2

2 + cosh (𝑘1+𝑝1−𝑘2−𝑝2 ) (1+2𝑁 )
2 − (𝜔1 − 𝜔2) sinh 𝑘1+𝑝1−𝑘2−𝑝2

2

− cosh 𝑘1+𝑝1+𝑘2+𝑝2
2 − cosh (𝑘1+𝑝1+𝑘2+𝑝2 ) (1+2𝑁 )

2 + (𝜔1 + 𝜔2) sinh 𝑘1+𝑝1+𝑘2+𝑝2
2

.

For the 3-soliton solution we obtain the form:

𝐹𝑚
𝑛 = 1 + 𝑒[1 + 𝑒[2 + 𝑒[3 + 𝑒[1+[2+𝐴12 + 𝑒[1+[3+𝐴13 + 𝑒[2+[3+𝐴23 + 𝑒

3∑
𝑖=1

[𝑖+
3∑

1≤𝑖< 𝑗

𝐴𝑖 𝑗

,

with:

[ 𝑗 = 𝑘 𝑗𝑛 + 𝑝 𝑗𝑚 + 𝜔 𝑗 𝑡 + [
(0)
𝑗
, 𝜔 𝑗 = 2

sinh (𝑘 𝑗+𝑝 𝑗 )𝑁
2 sinh (𝑘 𝑗+𝑝 𝑗 ) (𝑁+1)

2

sinh 𝑘 𝑗+𝑝 𝑗

2

, 𝑗 = 1, 3

𝑒𝐴𝑖 𝑗 =
− cosh 𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗

2 + cosh (𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗 ) (1+2𝑁 )
2 − (𝜔𝑖 − 𝜔 𝑗) sinh 𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗

2

− cosh 𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗

2 − cosh (𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗 ) (1+2𝑁 )
2 + (𝜔𝑖 + 𝜔 𝑗) sinh 𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗

2

.

1In this notation, 𝑚 is not an exponent
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The N -soliton solution has the following expression for 𝐹𝑚
𝑛 :

𝐹𝑚
𝑛 (𝑡) =

∑︁
`1,`N={0,1}

exp ©«
N∑︁
𝑖=1

`𝑖[𝑖 +
N∑︁

1≤𝑖< 𝑗

`𝑖` 𝑗𝐴𝑖 𝑗
ª®¬ , (18)

where:
[ 𝑗 = 𝑘 𝑗𝑛 + 𝑝 𝑗𝑚 + 𝜔 𝑗 𝑡 + [

(0)
𝑗
, 𝑗 = 1,N

𝜔 𝑗 = 2
sinh (𝑘 𝑗+𝑝 𝑗 )𝑁

2 sinh (𝑘 𝑗+𝑝 𝑗 ) (𝑁+1)
2

sinh 𝑘 𝑗+𝑝 𝑗

2

,

𝑒𝐴𝑖 𝑗 =
− cosh 𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗

2 + cosh (𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗 ) (1+2𝑁 )
2 − (𝜔𝑖 − 𝜔 𝑗) sinh 𝑘𝑖+𝑝𝑖−𝑘 𝑗−𝑝 𝑗

2

− cosh 𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗

2 − cosh (𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗 ) (1+2𝑁 )
2 + (𝜔𝑖 + 𝜔 𝑗) sinh 𝑘𝑖+𝑝𝑖+𝑘 𝑗+𝑝 𝑗

2

.

3.3 The periodic reduction

Now, all the multi-soliton solutions for the coupled aB systems for any 𝑁 are coming straight-
forward from the aB 2D-lattice (15) and one can easily see this by looking at the two bilinear
forms:

• for aB (n,m,t) 2D-lattice:

Dt𝐹
𝑚+1
𝑛+1 · 𝐹𝑚

𝑛 + 𝐹𝑚+1
𝑛+1 𝐹𝑚

𝑛 = 𝐹𝑚+1+𝑁
𝑛+1+𝑁 𝐹𝑚−𝑁

𝑛−𝑁 , (19)

• for coupled aB (n,t) system:

Dt𝐹a+1 · 𝐹a + 𝐹a+1𝐹a =

(𝑁+1)
𝐹a+1+𝑁 𝐹a−𝑁

(𝑁 )
. (20)

The systems are the same, considering that the second index, 𝑚, of𝑄𝑛,𝑚(𝑡) = 1+ 𝜕
𝜕𝑡
𝑙𝑜𝑔

𝐹𝑚+1
𝑛+1
𝐹𝑚
𝑛

in (19)

becomes a = 1, 𝑀 in (20), parameter which indiciates the soliton solutions 𝑢a (𝑡) = 1 + 𝜕
𝜕𝑡
𝑙𝑜𝑔

𝐹a+1
𝐹a

for the M-component aB system.
For example, in the case 𝑀 = 2, the 𝑚-dependence is dropped, 𝑝 𝑗 appearing in the definitions

will be −𝜋i , +𝜋i making the dispersion relation to have two branches (allowing solitons to move
either in the same direction or opposite to one another).

For 𝑀 = 3, again the𝑚-dependence is dropped, 𝑝 𝑗 will be−2𝜋i/3, +2𝜋i/3, 2𝜋i (its exponentials
are the cubic roots of unity), leading to the three branches of the dispersion relation.

For ∀𝑀 , dropping the 𝑚-dependence, 𝑝 𝑗 ∈ {a 2𝜋i
𝑀

}, a = 1, 𝑀 (its exponentials are the M
roots of unity), we have the 𝑀 branches of dispersion. Applying the above correspondence to the
multi-soliton solution of aB 2D-lattice (18), we rediscover the multi-soliton solution of coupled aB
system (14).

Considering the above parallel, the periodic reduction proves again to be a very effective tool
for deriving multi-soliton solution for multicomponent systems.

9
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4. Conclusions

In this paper we studied the coupled additive Bogoyavlensky system with branched dispersion
relations and as a particular case (𝑁 = 1) the coupled Lotka-Volterra system. The main motivation
was to prove once again that the integrability survives in coupled systems. The main feature of
such coupled systems is the structure of the dispersion relation (having multiple branches) and the
structure of the phases of the components, parametrised by the order 𝑀 roots of unity. The existence
of many branches of the dispersion relation allows more freedom in solitons interaction. It was
shown by Hirota bilinear formalism that the coupled aB system is integrable and moreover it was
shown that with a periodic reduction of an integrable aB 2D-lattice equation the multi-solitons are
easier to construct.
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