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In  this  work  we  obtain  semi-empirical  expressions  for  the  probability  to  find  solution  of
Quantum random walk search algorithm on hypercube when the traversing coin is constructed
by generalized Householder reflection and an additional phase shift. Calculations are made for
specific relations between coin phases (first from the reflection and second from the shift), that
are obtained in our previous works. The quantum algorithm could be made more robust against
phase  errors,  if  an  experimental  implementation  preserves  those  relations.  The  results  from
numerical simulations of quantum random walk search algorithm on hypercube are used to find
an empirical formulas for algorithm’s probability to find solution. Those formulas, obtained by
fitting data to a suitable function, are used to make prognosis about the algorithm’s robustness
when  dimension  of  the  coin  is  too  large  to  be  simulated  on  classical  computer.  Here,  we
explicitly show all steps of the method used in the paper, while also discuss its advantages and
limitations.  The goal of this work is to help the experimental implementation of the quantum
random  walk  search  algorithm  by  giving  evaluation  of  the  algorithm’s  robustness  and  the
obtained probability to find a solution when our design of the walking coin is used. 
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1. Introduction

One of the reason behind the huge interest in quantum computers is due to their ability to
use the laws of quantum mechanics to compute variety of task faster than classical computers [1].
There  are  currently  more  than  60  quantum  algorithms  that  are  faster  than  their  classical
counterparts.  Each of them have different speedup. Quantum computers can be used to factor
numbers exponentially faster than best classical computers  [1], can search unordered databases
quadratically  faster  than a classical  computer  [1] [2] and  can  search  ordered  database
approximately two times faster [3]. 

There are different kinds of quantum algorithms, based on the way they operate.  One
broad class of algorithms are those based on quantum random walk (QRW) [4]. Examples of such
algorithms are quantum algorithm for verification of matrix products [5], quantum algorithm for
calculating boolean formula  [6], and quantum random walk search algorithm (QRWS)  [2]. The
latter can be used to search databases with arbitrary topology. Examples for some topologies on
which  the  quantum  random  walk  is  studied  are  square  grid  [7],  simplex  [8],  trees  [9] and
hypercube  [10].  This algorithm was modified by many authors to improve in various ways the
search on those structures.

Nowadays, many companies are trying to develop quantum computers. Few examples are
Intel,  Microsoft,  IBM,  IonQ, and  Xanadu.  They  base  their  computers  on  different  physical
systems. Different implementations allow some operations to be performed more easily on some
systems than on others. For example, in ion traps [11] and photonic quantum computers [12], the
quantum gates can be constructed by decomposition to Householder reflections  [13] and phase
gates or by using just generalized Householder reflections (GHRs) [14]. The second method is
quadratically  faster  than  decomposition to Givens  rotations  [1]and  can  be  done  in  case  of
operators with arbitrary dimension [14].

In our previous works [15] [16], we investigate the stability of QRWS on hypercube when
the  walk  coin  is  constructed  by  GHR  and  an additional  phase  multiplier.  We  have  studied
probability to find solution for different relations between both phases (one from GHR and second
from  the multiplier):  when the first  one is  constant  (studied also  in  [17]),  linear  dependence
between  them,  and  two  nonlinear  connections.  We  have  shown  that  the  experimental
implementation of those relations could lead to a significant increase in the quantum algorithm’s
robustness. The numerical results of the probability for those dependencies in the interval from 0
to π for larger coin show behavior similar to sigmoid or Gauss function. 

The Hill function is used in mathematical and computational biology [18]. Depending on
parameter’s values of the function, it can have the required form. The Hill function successfully
describes reaction rate of many systems, for example binding of Oxigen to hemoglobin. 

In this work we fit  the probability  of QRWS algorithm to find solution for the above
mentioned functional dependencies with modified by us Hill function. With those fits we compute
the  modified  Hill  function’s  parameters,  that  allows  us  to  make  prognosis  of  the  maximal
probability  to  find  solutions  and robustness  of  the  QRWS algorithm for  given  coin  size  and
functional dependence between phases. Those results will be useful for experimental physicist
that are implementing quantum random walk search algorithm, to chose the coin suitable to their
experiments - depending on the difficulty of constructing it and desired robustness. 

This work is organized as follows: in Section 2 a brief  review of QRWS algorithm is
given.  Section  3  begins  with  description  of our  modification  of  the  coin,  definition  for  the
robustness, and at the end gives the four different functional dependencies between phases as
defined in[16]. Our modification of the Hill function is explained in Section 4. At Section 5 our
method is explained in detail.  The first subsection shows our fits for the probability of QRWS
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algorithm to find a solution for different coin sizes and functional dependencies between coin
angles.  The  standard  deviation  of  those  fits  are  evaluated  and  analyzed.  The  Hill  function’s
parameters  are  extracted  for  all  simulated  coin  sizes  and,  for  each  of  those  parameters,  a
secondary fit as a function of the coin size, is obtained (Section 5.2). In the next subsection we
compare  our  fits  of  the  of  the  probability  to  find  solution  based  on  the  Hill  function  with
simulations data. We also make extrapolations for the behavior of the probability for larger coin
size. In the last subsection we use those fits with the modified Hill function to obtain prognoses
for  the  maximal  probability  to  find  solution  and  the  width  of  the  stability  range.  Section  6
provides concluding remarks and discussions.

2. Discrete time quantum random walk search algorithm

Discrete time quantum random walk search algorithm DTQRWS is probabilistic quantum
algorithm that finds element on graph that satisfies a given criteria. The algorithm is quadratically
faster than the best known classical algorithms and can be used on graph with arbitrary topology.
In  this  work  we will  focus  on QRWS when it  traverse  a  hypercube.  Quantum circuit  of  the
algorithm is shown on Fig. 1.

Algorithm uses three registers, first is control register that is used for control gates, it has
only two states. The third one is the coin register. It corresponds to the number of edges coming
from each node in the graph – it can have arbitrary dimension m and it is determined by the
topology. The second register is the register of nodes, and in the case of hypercube, its dimension
is determined by the number of edges 2m .

The algorithm begins with modifying the initial  state of node and coin registers  from
|0 ⟩ to equal weight superposition. In case of registers of qubits it  can be done by applying

Hadamard gate on each qubit. Otherwise, when the register is made by qudits, the superposition
can be obtained by applying the discrete Fourier transformation operator.  Next, the algorithm
continues with making the algorithm’s iteration a fixed (no more, no less) number of times. The
iteration itself consists of the following steps:

1) An oracle is applied on control and edge registers. It changes the state of the control
register depending on whether the given node is a solution or not. The oracle should be made by a
function that is able to recognize the solution when it is presented to it.

2) A walk coin is applied on the edge register (known also as coin register) on all states
that are not solutions. It can be arbitrary unitary transformation with dimension equal to the coin
register. However, the best coin that should be used depends on variety of factors including the
topology and dimension of the walked object. In case of Hypercube, the most often is used the
Grover’s coin C0= I−2|χ ⟩ ⟨ χ|.

3)  The marking  coin is  applied on all  states  that  are solution. The best  marking coin
depends on the walk coin used. For hypercube and Grover walk coin, the best coin is C1=−I  

4) The oracle is applied a second time.
5) The shift operator S is applied on the registers of nodes and edges. Depending on the

state of the edge register (the coins are applied on the edge register), it makes the transitions in the
state of the register of nodes. 

S=∑
i=0

2m−1

∑
j=0

22m

−1

|i , j ⟩ ⟨i , j ⊕
bitwise

i| (1)

The algorithm ends with measurement of the node register. With certain probability the
measured  state  will  be the  searched  one.  This  probability  have  sinusoidal-like  behavior  that
depends on the number of iterations made and on the coin used. However, in real systems there
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are various effects that can interfere with the construction of the coin – from experimental setup
imperfections to noisy environment. This is the reason why the robustness, against such errors is
so important to be studied in detail.

Fig 1: Quantum circuit of the Quantum random walk search algorithm. The algorithm begins with
applying discrete Fourier transform to each register.  Next,  a QRWS iteration is applied fixed
number  of  times.  Each iteration, represented  with  yellow rectangle,  consists  of  the  following
gates: Oracle O, shift operator S, traversing C0 and marking C1 coins. The algorithm ends with
measurement of the node register.

3. Phase error of the traversing coin and our modification’s robustness

The  traversing  coin  changes  the  state  of  the  coin  register  and  thus  determines  the
probability of  going in  either  direction.  Depending on the state  of  the coin register,  the shift
operator changes the node register’ state. 

The best way to construct a walk coin operator depends on the physical system, on which
the algorithm is implemented. For example, for ion trap [11] and optical quantum computer [12],
it is easy to implement a Householder reflection operator. If the walked graph is regular, all walk
coins can be constructed by one GHR and one phase multiplier [14]:

C0(ζ ,φ ,n)=ei ς (I−(1−eiφ)|χ ⟩ ⟨ χ|) (2)

, where n is the dimension of the coin, the angles ζ and φ come from the phase multiplier and the
generalized Householder respectively. In case of regular graph, |χ ⟩ is equal weight superposition

|χ ⟩=(1 /√m)∑i=1

m
|i ⟩ of  all  states  i.  So,  the  probability  to  find  solution  is  function  of  three

parameters:

P=P (φ ,ζ ,m)=0.5−O(1/2n) f (ζ ,φ) (3)

A commonly used coin that in many cases gives the best result is the Grover coin. It can
be obtained by Eq. (2) with: 

ζ=φ=π (4)

However, in real physical system there are many imperfections. For example, variations
in the laser field’s phase and frequency, imprecise pulse shape, and others. Also there are many
sources  of  noise  that  affect  the  physical  system –  such  as  random photons  coming from an
external medium that are absorbed. The probability of QRWS to find a solution strongly depends
on the coin operator used, so all errors in it can lead to undesired effect. For example, if the noise
changes phases to  ζ=φ=0, the coin C0 becomes the identity operator and there is not walk at
all.

This  makes  important  the  study  of  the  quantum  algorithm’s  implementation  in  the
presence of noise. Here, we will discuss the case when there are errors in the phase. We say that
algorithm is robust (against errors in the phase  φ) if there is large interval Δ=(φmax− ε

− ,φmax+ε
+)
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around  its  maximal  value  φmax,  where  the  probability  to  find  solution  is  almost  equal  to  its
maximal value:

P (φ∈ (φmax−ε
− ,φmax+ε

+) , ...)≃Pmax=P (φmax ,...) (5)

In order to compare how different modifications of the coin are affected by phase errors,
we define that one modification is more robust than other if the first one have larger interval of
robustness Δ. In case of hypercube, when the coin size is larger than two, the points with largest
probability to find solution are located in connected area  [16]. A properly introduced functional
dependencies between the phases  ζ (φ ) can be used to connect the points in this area with the
highest probability to find solution. Those functions can differ for different coin size.

P (φ ,ζ ,n)=P (φ ,ζ (φ ),m=const )=P (φ) (6)

They are symmetric about the line φ=π , and in this case ε−=ε+=ε. The probability to find
solution as a function of the phase  P (φ),  and its corresponding  ε ,  for some relations  ζ (φ ) are
obtained in [15]. Here we will show some of those relations, that will be used later in this study:
One angle is constant:

ζ=π (7)

The linear function with the largest ε:
ζ=−2φ+3 π (8)

Nonlinear function with large ε:
ζ=−2φ+3 π−1/(2 π)sin(2φ) (9)

Suggested by machine learning value of αML:

ζ=−2φ+3 π+αMLsin (2φ) (10)

On Fig 2 is shown the probability to find solution P for QRWS on hypercube as a function
of Householder phase φ. The left figure is for coin size 4, the right is for coin size 10. Each color
and dashing represent different functional dependence between the two phases. Linear  relations
between phases Eq. (7, 8) are depicted by dot-dashed red and dashed teal curves accordingly. The
nonlinear dependencies given by Eq. (9,  10) are too close and can not be  distinguished on the
figure.
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Fig  2:  Probability  to  find  solution  in  implementation  of  QRWS  algorithm,  with  walk  coin
parameters related as ζ (φ ). The left picture is for coin size 4 and the right is for coin size 10. The
red dot-dashed line corresponds to Eq (8), teal dashed - to Eq (7). The blue dotted and the green
solid lines depict Eq (9) and Eq. (10). They give very close results, so its difficult to distinguish
them without scaling the images. 

For all coin sizes between 4 and 12 (see [16]), the robustness of the quantum algorithm
corresponding to those functions is ordered (from smallest to largest) as follows: Eqs. (7),(8),(9),
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(10). In the interval between 0 and 2 π,the probability P (φ ,ζ (φ) ,m) for all ζ (φ ), is always similar
to one of two functions: 

1)  Two Sigmoid-like  functions.  The  one  is  a  mirror  copy  of  the  other  and  both  are
connected together at the point φ=π .

2) Gaussian distribution with maximum at φ=π .
Both of those curves can be approximated by a modified Hill function.
 

4.  Modification of Hill function

In biochemistry, mathematical and computational biology, there are variety of quantities
of chemical processes, where the reaction are described by a different functions. Similar behavior
to our results for  P (φ ,ζ (φ) ,m) can be seen for the reaction rate when one big molecule have
different reaction centers and each of them can bound with a small molecule called inducer. When
the binding events have an influence on each other (cooperative binding), that leads to nonlinear
reaction rate. The current reaction rate depends of a variety of parameters - maximal reaction rate
(b), free reacting centers (n), quantity of inducers (s) and complex formation ratio (k). This rate
(H) is described by Hill function, that can be written as:

H (s,b ,k ,n)= bkn

sn+kn (11)

We use the Hill function coming from biochemistry and it should not be mistaken with the
Hill  equations  in  quantum mechanics,  carrying the  same name,  that  are  solutions  of  the  Hill
differential  equation  –  a  second  order  differential  equation  for  the  periodic  function  f.  The
equation u=u' '− f (x)u  is  widely  used  in  the  quantum  physics,  for  example  in  two  level
systems in quantum optics and in the condensed matter physics.

To be able to approximate the whole curves given by Eqs. (7,8,9,10) when φ∈[0,2π ] we
modify Eq. (11) to:

W (x ,b ,k ,n ,w)=H (|x−w|,b ,k ,n)= bkn

|x−w|n+kn (12)

where in this case x is used as coordinate axis. 
Here s=|x−w| and is the same for x-w when x>0 and with x+w when x is less than zero.

This  means  that  this  modulo  mirrors  the  Hill  function  relative  to  the  line  w=const ,  and  the
parameter w corresponds to the center of the “bell shaped” function (see Fig 4 top center). The
only condition for parameter w is to be real number, otherwise it interferes with the height (see
Fig 4 down right)

The parameter b corresponds to the maximal height achieved at the point x=w (see Fig 4
top center). The value of b should be positive number, as the probability W  can not be negative. 

The value of the parameter n corresponds to both: the curvature and slope of the curve
(see Fig 4 top left). If n is not strictly positive, the modified Hill function is W (x ,b ,k ,0 ,w)=b /2
for  n=0  and  W (x ,b ,k ,n<0)=b−W (x ,b ,k ,|n|) for  n<0  (see  Fig  4 bottom  left).  The  function
W (x ,b ,k ,n<0)=b−W (x ,b ,k ,n>0) have  completely  opposite  behavior  to  W (x ,b ,k ,n>0 ,w),  so
where the first is ascending the second is descending. The first have maximum, where the second
have maximum and vice versa. So, W (x ,b ,k ,n<0) describes completely different behavior and we
can not use it in our fits. In our case n should be positive.

The parameter  k is  the  translation of  the mirrored curve (see Fig  4 top center).  This
effectively means that k corresponds to the width of the plateau. The width of the plateau depends
on the value of n (increases with n), but for high value of n it is approximately 2k and when n→∞,
the plateau becomes equal to 2k. The height of the plateau is approximately b. The parameter k

6
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should be positive, k>0. Otherwise, the function’s behavior depends a lot on the value of n. When
n is an odd number and k<0 the function W diverges (see Fig 4 bottom center). The divergence is
coming from division by zero because parameters x, w, and k didn’t obey (x−w)n≠−kn . In case of
negative k and non-integer n, W have a complex value, which is not physical. When n is even and
k<0, the function W have the same result as if k>0. When k=0, the value of W is also 0.

On Fig 4 are shown examples for modified Hill functions with different parameters. Top
figures shows the cases when parameters in the function obey the conditions discussed above, and
bottom figure - when they don’t. 

Fig  4: Curves obtained by the modified Hill function W(x, b, k, n, w) with different parameters. Top left
figure  presents  examples  with  different  values  of  n.  On the top  right  figure  are  shown examples  with
different values of w. The top center figure gives examples for different values of k. Bottom left figure shows
examples when condition n>0 is not fulfilled. Bottom center figure gives examples when condition k>0 is
not fulfilled. Bottom right figure gives examples for the cases when w is complex. 

In the next section, we will approximate P (φ ,ζ (φ) ,m) by using the modified Hill function
for different functional dependencies between the angles ζ (φ ) and different coin sizes. Later, we
will use those approximations to make prognosis for larger coin size that can not be simulated on
the present computers. 

5. Approximation of P (φ ,ζ (φ) ,m) with modified Hill function

5.1 Fitting function P (φ ,ζ (φ) ,m) for fixed coin size

In this section, we will  find accurate semi-empirical expressions of the results for the
probability of QRWS to find a solution by fitting the simulated data points with the modified Hill

7
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function W (x ,b ,k ,n ,w). In our work, the variable x corresponds to the angle φ. For all coin sizes,
the functions described by equations (7,8,9,10), are symmetric relative to the axis φ=π . So, for all
of them w=π . The values of all other parameters b, k, and n could change with the coin size m
and  described  correlation  between  phases  ζ (φ ).  The  probability  of  QRWS  to  find  solution
expressed in the form of modified Hill function becomes:

W (φ ,b ,k ,n)=W (φ ,b ,k ,n , π )= b kn

|φ−π|n+kn (13)

The  points,  obtained  by  numerical  simulations  of  QRWS  algorithm,  for  all  given
functions P (φ) (equations (7,8,9,10)) and coin sizes between 4 and 11 (showed in [16]), are fitted
with modified Hill function (12). All fits have relatively small uncertainties as will be shown later
in the work.

The quantum register of QRWS algoritm with coin size m have dimension that can be
computed by the following formula  m2m+1. When we simulate the quantum algorithm, the PC’s
memory used  to  store  the  quantum register  is  proportional  to  register’s  size,  so  the  memory
requirements increase exponentially. The bigger vectors and operators also require more time to
compute, in addition number iterations increase with the coin size as  k∼√2m−1. As example, the
simulations  for  coin  sizes  between  4  and  10  were  performed  on  PC  with  the  following
characteristics: Intel I7 processor with 16 logical cores, 64 GB of RAM. For coin sizes 11 and 12
we use work station with 2 TB RAM, 20 computational cores AMD Ryzen 9 5900X. The work
station was not able to simulate the quantum algorithm with coin size 13. In contrast to directly
simulate  the  quantum algorithm,  using  approximation  with  Hill  function  will  be  much  more
simple. Here the task is reduced to calculations using a single formula without matrix calculus
(see Section 5.2.). This allows to make predictions by using only PCs with characteristics similar
to the mentioned above.
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Fig 5: Fitting the probability to find solution of QRWS for hypercube with modified Hill function.
Traversing coin is with size 10 and is constructed by generalized Householder and additional
phase. Each figure corresponds to different functional dependence. Top left is for Eq. (7), top right
- (8), bottom left - (9), bottom right – (10). The solid curves represent the fitting curves, and with
discrete symbols are shown the numerically computed data points.
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The numerical results for  P (φ ,ζ (φ) ,m), given by Eq. (6), for small coin size (  m=2 ,3 )
and all studied relations  ζ (φ ), have very different behavior from those with the larger coins. In
order to make consistent fits for m>3, which are of primary interest to us, we exclude those cases
from further consideration. 

As an example, on Fig. 5 we show the fit of P (φ ,ζ (φ) ,m)in the case of coin size 10 for
each of the functional dependencies between the angles  φ and  ζ . The figures corresponding to
Eqs. (7,8,9,10) are shown on top left, top right, bottom left, and bottom right respectively. For
each function, the fit is made by using 180 points, however to make the figures more clear, we
show on them only 30 of the fitting data points (except for Eq. (7), where all of the 180 simulated
points are plotted).

Equation b k n σ

Eq. (7) 0.423709 0.0659965 3.21164     0.00773994

Eq. (8) 0.452758 0.549574 1.85211     0.01788300

Eq. (9) 0.425852 1.19992 6.69816     0.00832803

Eq. (10) 0.426070 1.18997 6.48552     0.00836701
Table 1  Modified Hill function parameters, resulted of fitting discrete time QRWS algorithm for
hypercube  when  the  coin  register’s  size  is 10.  Each  row corresponds  to  different  functional
dependence between phases and columns are for parameters b,k,n, and the standard deviation of
the fit.

The results of the fit for coin size 10 are shown on  Table 1. Each row corresponds to
different functional dependence between angles – equations (7), (8), (9) and (10) respectively.
Each column represents different parameter in the modified Hill function (13) and the last column
is for the standard deviation, defined as: 

σ=√∑j=1

N (W j(φ ,b ,k ,n)−P j(φ ,ζ (φ) ,m))2

N−q
(14)

Here, N is the number of fitting data points, q – the number of fitting parameters (in our case 3 –
b ,k , and  n),  P j(φ ,ζ (φ ) ,m) is  the  jt h point  (i.e.  at  φ=φ j)  for  the  probability  to  find  solution,
simulated in our previous work [16]. Finally, W j (φ ,b ,k ,n) is the jt h fitted point for the probability
P (φ ,ζ (φ) ,m). The Table 1 shows that the standard deviation of the Eq. (8) fit (linear dependence)
is much worse than the deviation of the other functions’ fits.

We will investigate the behavior of σ  with the increase of the coin size. This will give us
an estimate of how reliable will be the approximations based on a modified Hill function fits. In
order  to  evaluate  our  method,  we make prognosis  for  the standard  deviation of  the  fits  with
increasing the coin size. 

The values of σ  for all fits of equations (7), (8), (9), and (10) by modified Hill function
are presented on Fig. 6. Points are for coin sizes between 4 and 11. All fits have relatively small
standard deviation – less than 0.03. The best fits are for both nonlinear dependencies (Eq. (9), and
Eq. (10)), and the worst is for Eq.(8). Here can be seen that the deviation decreases when coin size
increase when the relation between phases ζ (φ ) is defined by Eq. (7), (10) or (9). Eq. (7) leads to
the lowest σ . This means that the modified Hill function (13) fits P (φ ,(ζ (φ))by Eq. (7 ) ,m) very well,
and its prognosis is probably most reliable. In case of the relation given by Eq. (8), we see that the
prognosis is that σ  slows it’s increase and goes to a fixed value. This shows that prognosis made
for this function is still useful, however less reliable than the predictions for the other functional
dependencies. The fits corresponding to the nonlinear functions for  ζ (φ ) described by (9) and
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(10), are most robust against the inaccuracies. The standard deviations of those fits decrease with
increase of the coin size.

5 10 15 20 25
m

0.005
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0.015
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0.025

Fig 6: Standard deviation of QRWS algorithm’s fits when the walk coin is constructed according
to Eqs. (7), (8), (9), and (10). The fitting expressions are found by fitting the numerical data points
from our previous paper [16], to the modified Hill function. The red 4-pointed star labels the data
corresponding  to  Eq.  (8)  and  dot-dashed  curve  is  the  fit  of  those  points.  The  teal  circle
corresponds to the results for Eq. (7) and dashed curve - to its fit. Similarly, the solid green line
and 6-pointed star correspond to the fit and the numerical results coming from using Eq. (10), and
the blue doted line and 5-pointed stars are for using Eq. (9).

Once we are satisfied that this fit is good enough, we can continue with the next step. We
will express the parameters b, k, and n in (13) as a simple functions of the coin size. Thus, the
probability of the QRWS algorithm to find solution will become a function of only φ and m, for
each relation ζ (φ )investigated in the work.

5.2. Hill function for coin parameter relations of interest with respect to coin size

The results presented above, give us the basis to find more practical fitting expressions for
all coin parameter relations (Eqs. (7), (8), (9) and (10)) studied in the previous section. In the new
fitting formuale the probability to find solution depends only on two parameters – the phase φ and
the coin size m: 

T i(φ ,m)=
bi(m)k i(m)ni (m)

|φ−π|ni (m)+ki(m)ni(m) (15)

Here, the index i=1,2 ,3,4 corresponds to the different functional dependances between the
traversing coin parameters  φ and  ζ  given by Eqs.  (7), (8), (9), and (10). This is achieved by
making secondary fits for the parameters b, k, and n (Eq. (12)) for all  studied dimentions m,
where the Hill function’s properties were taken into account. The fits were done with simple two-
and three-parameter expressions (see Table 2), so although we only have eight points (m=4÷11)
for each parameter bi , ki ,ni in Eq.(15), relatively accurate fits were achieved. 

In  Table  2 are  given  the  fitting  coefficients  for  all  curves  of  the  probability
T i (φ ,m) , i=1,2,3,4 corresponding  to  Eq. (15)  and  all  functions bi(m) , k i(m) ,ni (m) with  their
parameters.

As an example, on Fig.  8 are shown T i(φ ,m) for both m=4 at top left and m=10 at top
right. The blue five-pointed stars match very well the blue dashed curve, similarly the green six-
pointed star coincide with the solid green curve. It can be seen that Eq.(15) fits really good the
probability P (φ ,ζ (φ) ,m) given by the functional dependences Eq. (9) and Eq. (10). The blue and
green lines are very close to each other, that is why they cannot be distinguished on the figure.
The teal dashed line fits the teal circles well too. The worst fit is for the dependence Eq. (8),
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however around the high probability area the red dot dashed curve fits the points well enough.
The results presented on Fig.  8 are similar to the original fits on Fig.  5. On the bottom line of
Fig.8 are shown predictions for P (φ ,ζ (φ) ,m) with the modified Hill functions for coin size m=15
(on the left side) and for coin size m=20 (on the right side).

Fig 8: (First row) A comparison between the numerically simulated data points for P (φ ,ζ (φ) ,m)
of QRWS for coin sizes 4 and 10 (where the teal circle, red four point star, blue five point star and
green six point star correspond to the probabilities obtained from numerical simulation of Eqs.
(7), (8), (9) and (10)) and our empirical expressions Ti(φ,m), i=1,2,3,4 derived in this work, where
the  functions  bi(φ ) , ki(φ) , ni(φ) are  taken  from  Table  2.  The  index  i  corresponds  to  different
functional dependence Eqs. (7) showed as teal dashed line, (8) - red point-dashed line, (9) - blue
dotted line and (10) - green solid line. (Second row) The prognoses of our fitting formulae (15) for
the probability distribution P (φ ,ζ (φ) ,m) for coin sizes 15 (left) and 20 (right).
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m
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Fig 7: On the picture are shown the functions bi(m), ni(m), and k i(m) that are taking part in Eq.

(15)  in  interval  m∈[4 ,25].  The left,  the  center,  and the right  correspond to  bi(m) ni(m) k i(m)

accordingly. The lines: teal dashed, red point-dashed, blue dotted, and green solid correspond to
(7), (8), (9) and (10) respectively. The teal circle, the red four-pointed star, the blue five-pointed
star, and the green six-pointed star corresponds to the results of numerical simulations of QRWS
algorithm with functional dependence between phases corresponding to  (7), (8), (9), and (10)
accordingly.

To  show  that  our  final  expression  given  by  Eq.  (15),  describes  the  behavior  of  the
probability of QRWS algorithm to find solution as well as the initial fits (see Eq. (13) and Fig. 5),

11



P
o
S
(
B
P
U
1
1
)
1
7
5

Studying robustness of QRWS by semi-empirical methods H. Tonchev, P. Danev

we make Fig  9. There are presented the results for the parameters b, k, and n of the  first fit,
corresponding to each of the Eqs. (7), (8), (9), (10) and labeled with teal circle, red four-point star,
blue five-point star and six-point star accordingly. The dashed teal line, red dash-doted line, blue
doted line and solid green line show the fits of the functions bi(m), k i(m), and ni(m).

The computed points of the parameter b do not lay close enough to the fitting functions as
one could expect. We believe, it comes from the nontrivial behavior of the functions P (φ ,ζ (φ) ,m).
For different coin size m and different relation ζ (φ ), they show highly divergent behavior for the
points around the maximum. On the other hand, the fits with Hill function average the points at
the plateau. However, we want to make fits with as few parameters as possible and obtain truthful
behavior  of  the  parameter  b.  As  this  parameter  corresponds  to  the  maximum probability  for
QRWS to find a solution, and from theory Pmax(m→∞)=0.5 [10], b should be positive and grow
with increase of m to an asymptotic value at  m→∞. Our fitting functions meet these criteria. All
other  fits  of k i(m) ,ni(m), with  the  parameters  from  Table  2,  describe  well  the  functions
W (φ ,b ,k ,n) for all simulated coin dimensions m, and all relations ζ (φ ).  As can be seen on Fig. 7
that the functions bi(m) , k i(m) , and ni(m) converge to a fixed point. This gives us reason to believe
that those functions will not diverge for large coin sizes. 

Probability
curve

Parameter Fit function
Fit function’s parameter values
a d c

Eq.(7)
ζ=const

b1 a /m+d - 0.2855   0.4528 ---
k 1 a med m   0.8822 - 0.4954 ---
n1 a m2+dm+c  0.0000    0.0080 3.195

Eq.(8) 
α=0

b2 a /m+d - 0.4105    0.4704 ---
k 2 a med m 2.432 - 0.3581 ---
n2 a m2+dm+c   0.1162 - 2.090 11.41

Eq.(9)
α=−1 /(2π )

b3 a /m+d - 0.2897     0.4519 ---
k 3 a /m+d 7.450     0.4817 ---
n3 a m2+dm+c  0.2510 - 3.194 13.41

Eq.(10)
α=αML

b4 a /m+d - 0.2920     0.4524 ---
k 4 a /m+d 7.442     0.4833 ---
n4 a m2+dm+c  0.1898 - 2.307 10.61

Table  2: Functions bi(m) , k i(m) ,ni (m) used in Eq. (15). The index i=1,2,3,4 corresponds to coin
phase relations (7), (8), (9), and (10) respectively. “Fit function” shows the fitting function used.
In the last three columns are given the parameters’ values of those functions, that best fit the
numerical results.

5.3 Width of the stability range ε and robustness of QRWS 

The derived in this work empirical formulae  T i(φ ,m), allow us to investigate important
quantities  directly  related  to  the  robustness  of  the  QRWS  algorithm  to  inaccuracies  in  the
Householder phase φ. Here, we will study the width of the high probability subrange in the angle
φ - this is the quantitative description of the robustness, defined in [16] as ε . This can be used to
evaluate the acceptabe quantity of noise in the experiments, if the walk coin is constructed as is
shown in this paper. The definition given above in Eq. (5) will be written in a more convenient
form. The width ε when the probability is larger than a particular value could be defined by: 
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T i(φ∈ (φmax− ε ,φmax+ε))≃ΩT i , max(φmax ,m)=ΩT i , max(m) (16)

Here  Ω is  some  value  between  zero  and  one,  representing  the  percentage  of  the  maximal
probability wanted. The index i=1,2,3,4 corresponds to different relation between the coin phases
ζ (φ ) defined by Eqs. (7), (8), (9), and (10).To calculate the width of stability  ε, the maximum
probability to find solution T i , max(m) should be found first (see Eq. (16)). 

The  value  of T i , max(m) for  particular  dependence  between  phase  ζ (φ ) can  easily  be
calculated  by  Eq.  (15)  for  the  point  φ=φmax=π . The  relations bi(m),  k i(m),  ni(m) (each  i
corresponds to particular T i , max(m)) and their parameters are given in Table 2. 

The prognosis  for  T i , max(m) for  different coin sizes m and dependencies between  the
coin phases is shown on Fig 9 left. The teal circle, red four-pointed star, blue five-pointed star and
green  six-pointed  stars  correspond  to  Eqs.  (7),  (8),  (9),  and  (10)  respectively.  The  curve
corresponding  to  the  phase  relation  given by  Eq.  (8)  overestimates  T i , max(m) the  maximum
probability. The reason behind the inaccurate value of T i=2 , max(m) is the relatively low goodness of
fit of  the probability  P (φ ,ζ (φ) ,m) for  ζ (φ ) given by Eq. (8) as easily can be seen by higher
standard  deviation  for  the  fits  corresponding  to  Eq.  (8)  on  Fig.  6.  All  other  functional
dependencies  (Eqs. (7), (9), and (10)) show almost the same T i , max(m) as they should.

Having T i , max(m), we can substitute it in Eq. (15) and solve it for the particular percentage
of maximal probability that is needed to get the values of  φ=π±ε. From here  ε can be found
easily. 

The prognosis for  ε i(m) when  Ω=0.9 is shown on Fig  9 right. The best is for Eq.  (10),
where errors in the coin phase greater  than 20 degrees are acceptable,  without disturbing the
operation of the algorithm, even at large dimensions of the quantum register (m = 25). Slightly
worse  for  the  other  non  linear  dependence  Eq.  (9).  For  small  coin  size  Eq.  (8)  have  high
robustness but it decays fast with the increase of the coin size. Worst robustness is when Eq. (7) is
used. In this case ε1(m) is small even for low dimension coin. 

5 10 15 20 25
m

9

2 9

3 9

4 9

, rad

Fig 9: The left figure shows a prediction for the maximum probability to find solution T i , max(m) as
a function of the coin size. On right is shown he width of the stability range when the desired
probability is at least 0.9 T i, max. The teal circle, the red four-pointed star, the blue five-pointed star,
and the green six-pointed stars corresponds to relations between phases according equations (7),
(8), (9), and (10).

From the figure it can be seen that the behavior of all ε i(m) is similar to the one predicted
in  [16]. Even the local minimum around coin size 6-7 is well described by our fitting formula
(15), together with the decrease of ε i(m), as the size of the coin increases. The robustness of the
QRWS algorithm corresponding to Eqs. (7), (8), (9), and (10), computed by approximations with
the  modified  Hill  function,  is  similar  to  the  predicted  stability  of  the  algorithm by  machine
learning in  our  previous work  [16].  The advantage of  this  work is  that  it  gives  approximate
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formulae for calculation of the probability to find solution T (φ ,ζ (φ ) ,m)≃P (φ ,ζ (φ) ,m) and for the
robustness of the studied coins.

By knowing the value of the width of stability for desired coin size for each functional
dependence between phases, the experimental physicist can chose a coin that is optimal for the
needs.  They  can  do  so  by  comparing  desired  robustness  and  difficulty  in  experimental
implementation of the coin.

6. Conclusion

In this work we investigate the robustness of the Quantum random walk search algorithm
on  a  hypercube  with  walk  coin  constructed  by  generalized  Householder  reflection  and  an
additional phase multiplier. We make prognosis how the maximum probability to find solution
and  the  width  of  robustness  change  with  change  of  the  coin  size  for  specific  functional
dependence  between  the  phases  of  the  walk  coin  including:  one  constant  phase,  best  linear
connection between phases and two nonlinear dependencies. We were able to make prognoses for
sizes above the values, that can be simulated on classical computer with reasonable amount of
memory and time.

We make those predictions by first fitting the data from simulations of QRWS algorithm
showed in our previous works, with modification of Hill function. The parameters of the obtained
fitting  expressions,  were  fitted  themselves  with  simple  few-parameter  functions.  As  a  result,
formulae for the probability of QRWS algorithm to find a solution were derived as a function only
of the coin’s HR phase and the size of the coin register. This allows us to make prognosis for the
maximal probability to find solution and the algorithm’s robustness for arbitrary coin size. The
reliability of the model obtained by those fits was also discussed here. We compare the goodness
of fit for the different functional dependencies. 

The end goal of this work is to give a practical and easy to use tool for experimental
physicist that are realizing the high robustness modification of QRWS reviewed in this work, with
different  coin size and different  relations between the phases.  From all  considered coins,  the
easiest to implement is when one of its angles is constant, but such coin  requires very precise
experimental setup and parameter control and also is the most sensitive to noise. The best linear
dependence  gives  more  robust  performance  for  small  coin  size,  however  it  decays  fast  with
increasing the dimension of the coin. Both nonlinear functions show much better results even for
large coin size, however they are more difficult to be implemented.

By knowing the prognosed  value for the width of the stability range for particular coin
size,  together  with  the  prognosis  for  the  maximal  probability  to  find  solutions  for  a  chosen
correlation  between  phases,  one  can  choose  which  dependence  is  best  for  particular
implementation of the algorithm. The practical formulae derived in this work will allow for easier
analysis, planning, and optimization of experimental realizations of the quantum random walk
search  algorithm with  the  modified  walk  coin,  which  we have  shown can  lead  to  improved
robustness  of  the  algorithm. The  results  presented  here  can  be  used  to  compare  different
experimental  setups  for  running  QRWS algorithm,  depending  on  which  coin  relation  can  be
implemented to achieve the desired robustness and expected gain. The fitting expression and the
analyses presented in this work could be used as a basis for further more in-depth theoretical
studies of the quantum random walk search algorithm’s robustness.
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