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The paper reviews the mathematical models proposed for describing the proliferation of gliomas, 

the most common brain tumors, with strong dynamic invasiveness and proliferative growth. 

When the diffuse spreading through the brain and the heterogeneity of the tissue are considered, 

the growth of the tumor can be described by a reaction-diffusion equation, with the unknown 

quantity representing the concentration of the tumor cells. The long term expansion of the tumor 

can be simulated as a traveling wave, solution of the considered reaction-diffusion equation. An 

interesting connection between these waves and the bifurcation theory can be established 
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1.  Introduction. Medical data. 

 
Gliomas are the most common primary brain tumors, appearing as a result of the chaotic 

growth of the cancer cells in the glial tissue of the brain. From medical point of view, the 

spreading is described using parameters as the variation of the density of infected cells, ),( tru , 

or the "volume doubling time". The growth of glioma is determined by the superposition of two 

phenomena: proliferation of the cancer cells by repeated divisions, and motility or diffusion, 

consisting in a migration ("invasion") of the infected cells. Both the multiplication and the mi-

gration are extremely fast, without effects on the patient without obvious effects on the patient, 

which would allow early detection of the tumor. Because of that, gliomas are almost impossible 

to cure and have almost 100% fatality rate within approximately one year, even if extensive sur-

gery, radiotherapy and chemotherapy are applied [1]. Based on the data collected by various 

research groups, the radial growth velocity starts from 2  mm/year for "low-grade" gliomas and 

it can reach a ten times higher velocity for "fast-grade" gliomas. Depending on their location on 

the brain, the tumors can be observed starting from a radius of 3-2  cm and become fatal at 6  

cm (fatal tumor burden) [2]. 

Considering the previous arguments and the experimental data, the mathematical mod-

els describing the growth rate of gliomas take into account the following two fundamental as-

sumptions: the cell diffusion follows the classical Fick law, while the cell proliferation is linear. 

As we will see, expressed in terms of equations, these hypotheses will lead to a reaction-

diffusion mathematical model for the growth rate of gliomas. The mathematical problem be-

comes well-posed considering as border conditions the limited volume of the brain, since glio-

mas never metastasizing from it. 

The paper is structured as follows: after these introductive notes, in the second section 

various mathematical models proposed for the description of gliomas evolution will be re-

viewed. The third section, that represents the main section of the paper, will consider a general-

ized reaction-diffusion equation for describing gliomas growth and two specific methods for 

obtaining the solution in terms of traveling waves. The first method is based on the attached 

flow approach proposed in [3], while the second method is the classical first integrals approach 

[4]. This second method is considered because of its nice connections with the bifurcation theo-

ry, connections that can be very helpful in understanding the chaotic processes appearing during 

gliomas growth. The paper will end with a section of Conclusions, in which the main results 

reported in this paper will be synthesized. 

 

2. Mathematical models on the growth and diffusion of gliomas 

 
The growth and the diffusion of gliomas can be modeled assimilating the expansion 

process of the tumor's edges with the propagation of a traveling wave. An early stage attempt to 

describe gliomas growth was based on the assumption of the exponential law. It was a model 

inspired by the metastases in the lungs where the measurements show a growth at constant vol-

ume-doubling rates according to a simple exponential law, as it was noted by Collins and all in 

[5]. These models did not consider the motility (diffusion of the cells) and they are known as 

static models. 

A second category of models took into consideration, in addition to the proliferative 
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growth of the tumor, the cellular motility. This more realistic dynamical models were based on 

the results of Steel [6], who noticed that there is an order of magnitude difference between the 

times involved in the definitions of cellular and gross kinetics: hours to a few days for individu-

al cells, many days and even months for gross tumors. 

The real foundation of a mathematical model began in the early 1990s, with the re-

searches presented in [7]. Considering the hypotheses presented above, they proposed to de-

scribe the proliferation and the invasion (diffusion) of gliomas through a conservative-diffusion 

equation of the form: 

uρut +u)∇∇(A=        (1) 

Here A  is a constant diffusion coefficient, and ρ  is another constant representing the net prolif-

eration rate of the glioma cells. The choice of these two coefficients as constants is practically 

equivalent with considering that the brain tissue is homogenous. If, supplementary, we impose 

that the tumor is uni-focal, with a spherical symmetric growing, and we denote by x  the radial 

direction, we conclude that (1) takes the form of a simpler D2  partial differential equation 

(PDE): 

uρ
x

u
Auρ

x

u
A

x
ut +

∂

∂
=+

∂

∂

∂

∂
=

2

2

     (2) 

Experimental measurements lead to the idea that the detectable tumor margin expands with a 

constant velocity v , that is given by twice the square root of the product Aρ : 

Aρv 2=         (3) 

The relation (3) is known as the Fisher approximation. 

 

Remark: The linear radial growth of tumor determines a cubic growth of the volume. 

Here is the major difference between this dynamic model and the static ones, where the infected 

cells have an exponential growth. The main effect is that now the volume-doubling time is not 

constant. 

The weak point of the model described by (2) is that it considers the brain as homoge-

neous and isotropic. Practical investigations using the NRM technique show that, in reality, gli-

oma cells migrate more quickly along blood vessels and fiber tracts. The brain has white and 

grey zones, with greater respectively smaller motilities. In the first instance, two different con-

stants were considered as diffusion coefficients for the two zones. Later on the heterogeneity 

and anisotropy of the brain were included by switching to a model with )(= uAA  and )(= uρρ  

[8]. The new model is described by a full reaction-diffusion equation with variable coefficients. 

Keeping the idea of symmetric growth, one can write down this equation as the following D2  

PDE: 

uuρ
x

u
uA

x
ut )(+)

∂

∂
)((

∂

∂
=       (4) 

It is the most current mathematical model used to describe the proliferation and diffusion of gli-

oma cells before any medical intervention. Choosing appropriately )(uA  and )(uρ , coefficients 

that strongly depend on the patient and can be determined through repeated measurements, the 

model allows making predictions related to the evolution of the tumor and to the life expectan-

cy. 
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The model described by (4) can be improved, considering what is happening during and 

after the tumor's treatment. The treatment supposes a surgical resection, if it is possible, but an-

yway chemotherapy and radiotherapy. The influence of these interventions is expressed by in-

troducing in the equation (4) of an additional function, ),( txT , to describe the loss of tumor 

cells. The mathematical model becomes [7]: 

utxTuuρ
x

u
uA

x
ut ),(+)(+)

∂

∂
)((

∂

∂
=      (5) 

This improved model allows not only predictions on the life expectancies but also determination 

of the favorable moments for the application of chemotherapy and radiotherapy procedures after 

the surgery. To get such information, we have to solve (5) and, from the form of its traveling 

wave solutions, to identify the moments when the resorption of the wave is maximal and the 

density of cancer cells becomes minimal. 

 

3. The reaction-diffusion equation for the gliomas growth 

 
3.1. A generalized reaction-diffusion equation 

 
The equation (5) can be seen as a general diffusion-reaction equation of the form: 

)(+
∂

∂
)(

∂

∂
= uE

x

u
uA

x
ut       (6) 

Here )(uA  is the dissipative (diffusion) function, while )(uE  represents the reaction term. The 

equation (6) supports traveling wave solutions that can be obtained by passing to the "wave var-

iable" tλxξ -= . By simple computations, denoting
22 /",/=′ ξduduξdduu , the equation (6) 

can be written as a nonlinear ordinary differential equation (NODE) of the form: 

0=)(+′)(+)(+")( 2′ uEuuCuuBuuA      (7) 

The identification of (5) with (7) requires: 

.)](-)([=)(,=)();(=)( uξTuρuEλuCuA
du

d
uB    (8) 

The traveling wave solutions of the equation (7) were extensively studied in [9] through an in-

teresting approach, called the functional expansion method. Here we will analyze the equation 

(7) from the perspective of another method, the attached flow. The last one will allow connect-

ing the traveling waves with the theory of bifurcation and will show what type of solutions are 

expected for various choices of the diffusion function )(uA  and of the reaction function )(uE . 

As we will comment below, the spread of gliomas as a traveling wave is completely different 

when (7) has, for example, periodic or rational solutions. The appearance of these types of solu-

tions depends in turn on the values of the two parametric functions )(uA  and )(uE . 

Remark: In its general form, the equation (7) includes many nonlinear equations of in-

terest in physics, engineering and biomathematics. Specific examples of equations belonging to 

this class are the Schrodinger equation with cubic nonlinearity, the nonlinear Klein-Gordon 

equation, as well as Benjamin-Bona-Mahony, Korteweg de Vries, Burger, Chafee-Infante, Fish-

er type equations. Part of these equations can be exactly solved. They could be considered as 

auxiliary equations for other more complicated models with traveling wave solutions. 
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3.2. Glioma mathematical model in the attached flow approach 

 
Let us come back to the equation (7), with )(uB  and )(uC  given by (8). We will also assume 

that the functions )(),( uEuA are non-vanishing polynomials, with the highest degrees ),A(N

),B(N ),C(N  )(EN , and, respectively, with the minimal degrees { )(),(),(),( EnCnBnAn } 

greater or equal to zero. A simple and classical approach for solving (7) supposes its reduction 

to two first order differential equations. As it is an autonomous equation, the reduction can be 

made by defining: 

)(=′ ufu         (9) 

From (9), we have that: 

f
du

df
u

du

df
u =′="        (10) 

With (10), the equation (1) becomes a first order differential equation: 

0=)(+)()(+)()(+)()( 2 uEufuCufuB
du

df
ufuA    (11) 

Practically, we reduce the solving of (7) to the solving of (11) with the constraint (9). The reduc-

tion was generated by a change of variable in which the dependent variable )(ξu  from (7) takes 

the role of the independent one, the new dependent variables becoming the function )(uf , at-

tached to the derivative )(′ ξu . This reduction procedure was called in [3] the attached flow 

method. The new variable is the quantity )(uf  called flow and it is a solution of (11). 

We note that the equation (11) has the form of an Abel equation of the second kind [10] 

and it is not integrable for arbitrary coefficients. There are few exceptions when its solution can 

be written in an implicit form. Explicit solutions can be obtained in some specific cases, for ex-

ample if 0=)(uC , when we have a degenerate case. How to get traveling waves of (7) by solv-

ing the Abel equation for various diffusion and reaction functions was extensively studied in 

[11]. The majority of the wave solutions are given here in a parametric form. The same class of 

solutions can be generated through the attached flow method in a simpler and explicit form. The 

method precisely avoids arriving at an Abel equation, proposing a forced decomposition of the 

reaction term )(uE  as: 

)()(=)( uhufuE        (12) 

The equation (11) takes the form: 

0=)(+)(+)()(+)( uhuCufuB
du

df
uA      (13) 

When and how (13) can be solved is extensively presented in [10]. 

3.3. The first integrals and the bifurcation theory 

The reduction of the second order differential equation (7) to two first order equations is 

also achieved in another classical way, the first integral method [12], when we replace this equa-

tion with the system: 
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++=′

=′

),u(e)ξ(v)u(c)ξ(v)u(b)ξ(v

)ξ(v)ξ(u
2     (14) 

where     

)(

)(

)(

)(

)(

)(
=)(,=)(,=)( uA

uE

uA

uC

uA

uB
ueucub .  

 

It is what we are usually doing passing from the Lagrangean to the Hamiltonian formalism. 

The problem of solving (14) is clearly different from solving the system (9) and (11). In 

(14) the two variables u  and v  depend of ξ , while in (11) we have u  as independent and )(uf  

as dependent variables. For differential equations of order higher than two, the method leads to 

systems with more than two equations. 

We will not insist on the traveling wave solutions of (14). These solutions strongly de-

pend on the explicit form of the parametric functions )(),(),( ueucub , and, as we already men-

tioned, in the case of glioma's evolution they are very specific for each patient. The behavior of 

the tumor can be completely different for the various types of solutions supported by (14) and it 

is essential to know when a given type of solutions can appear. For example, we can have 

smooth solitary waves, kink or anti-kink solutions, periodic peakon solutions, or compactons. 

Each type of solution has to be managed differently. 

Depending of that, the gliomas growth can evolve following periodic or singular orbits. 

Such interesting connections can be obtained using the theory of bifurcation. Practically, the 

system (10) represents a planar system with three parametric functions. Following the papers of 

Jibin Li, Guarong Chen and Wenguio Rui [13, 14], the following results can be established be-

tween the analytical expressions of the parametric functions )(),(),( ueucub  from (14) and the 

types of its traveling wave solutions: 

(1) When )(),(),( ueucub  lead to a smooth homoclinic orbit to a saddle point of (14), the equa-

tion will accept a smooth solitary wave solution. 

(2) When )(),(),( ueucub  lead to a smooth heteroclinic loop connecting two saddle points of 

(14), the equation will accept a pair kink - anti-kink wave solution. 

(3) In specific conditions a homoclinic orbit can define a pseudo-peakon solution of (14). 

(4) A peakon solution of (14) can be generated by a curve triangle connecting saddle points and 

surrounding a periodic annulus of a center, as a limiting curve of a family of periodic orbits. 

(5) A family of periodic peakons can be generated by a family of periodic orbits. 

(6) When )(),(),( ueucub  lead to a family of open orbits, then the solution of (14) can be a 

family of compactons. 

As the parametric functions )(),(),( ueucub  are very different from one patient to an-

other, it is therefore clear that the mathematical models describing the growth of glioma are very 

rich from the perspective of their velocity and form of growing. 

4. Conclusions 

The paper focused on some mathematical models for glioma, one of the most invasive 

forms of brain cancer. The invasiveness is the result of two distinct phenomena: diffusion of the 

infected cells and proliferation of the static cells by division. Due to the two factors, the diffu-
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sion-reaction equations were found as adequate tools for describing the growth of the tumor. 

Clinical investigations made by computer tomography and by the magnetic resonance technique 

show that, at a long time scale, the proliferation and invasion of the tumor can be compared to 

the propagation of traveling waves in inhomogeneous and non-isotropic media. From medical 

point of view the main parameter measuring the tumor growth is the volume-doubling time, 

while the mathematical models describe the variation of the tumor cells density. 

Many mathematical models based on diffusion-reaction were proposed over the years, part 

of them considering the growth in itself, part of them simulating also the effects of surgical re-

section, radiotherapy and chemotherapy. The key issue of the simulations is to determine the 

traveling wave velocity and to make predictions on the life expectancies. The main mathemati-

cal difficulty in the direct solving of the corresponding diffusion-reaction equations is related to 

the fact that they lead to Abel equations, integrable in only a few cases. We mentioned two spe-

cific approaches that prevent such an outcome and allow finding explicit solutions. One of them, 

the first integrals method, also allows classifying the solutions following a bifurcation investiga-

tion. Many other approaches can be also used for investigating the integrability of the nonlinear 

systems. Part of such approaches is based on the extended or on the point-like symmetries of the 

system [15, 16]. A nice review of the methods that allow finding analitic solutions of various 

nonlinear models is offered in [17]  

The main conclusion is that a large variety of behaviors can appear in glioma's propagation. 

Even if the same equation is used for describing it, the effective evolution is determined by very 

specific factors intimately related to the particularities of each patient. These factors are includ-

ed in the mathematical model as parametric functions and determine the existence of solitary 

waves, kink waves or periodic waves, as solutions of the diffusion-reaction equation. 
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