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Current cosmological controversies can be solved if a sufficient level of precision is achieved
by observations. Future surveys with the next generation of telescopes will offer significantly
improved depth and angular resolution with respect to existing observations, opening the so-
called “era of precision cosmology”. But, that era can be considered already started at the radio
wavelengths with Very Long Baseline Interferometry (VLBI). In this paper, we give an overview
on how VLBI is contributing to some open questions in contemporary cosmology by reaching
simultaneously the largest distances and the smallest scales.
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1. Introduction

In the current standard cosmological framework ΛCDM (Dark Energy Cold Dark Matter),
simple gas (mostly H and He) evolves into highly complex galaxies, which are gravitationally
bound systems made of metal enriched gas, stars, dust, supermassive black holes, that can become
active and have a strong effect on the surrounding medium. All of these components are believed
to be embedded in a dark matter halo [1]. The cosmological model expects that the growth of
these structures is driven by the dark matter component and happens in an expanding Universe, as
known for almost a century [2] but still controversial [3]. We are in an era where we can approach
cosmology from an observational rather than a theoretical standpoint. The ΛCDM model has been
successful at explaining the observations of the large-scale structure of the Universe, but it presents
some issues on the small (galactic and sub-galactic) scales [4]. To clearly assess if such small-scale
problems affect all galaxies, it is mandatory to robustly characterize also high redshift (high-z)
galaxies. To do so, a primary requirement is high angular resolution and deep observations.

Current VLBI arrays are ideal to perform such tests, as they can provide milliarcsecond
(mas) and sub-mas angular resolution (at high frequency) and 𝜇Jy beam−1 sensitivity observations.
However, if we want to use VLBI arrays, the selected targets must emit radiation at the radio
wavelengths. Among the possible sources to investigate the small-scales of high-z galaxies there
are active galactic nuclei (AGN). In particular, those AGN that shows collimated jets ("jetted AGN")
can reach extremely large luminosities because of the effect of Doppler boosting [5]. Therefore, their
radio emission can be detected up to the highest redshifts, making them ideal targets for studying
the most distant Universe. Since jetted AGN can be cosmologically distant sources, some of them
could be strongly gravitationally lensed (see [6] for a review on strong lensing). The magnification
and amplification due to the presence of a foreground (lensing) massive and concentrated object
can make possible the detection also of the faintest jetted AGN in the form of multiple and distorted
images. Thus, strong lensing can provide an unbiased view on the jetted AGN population across
the cosmic time. Both lensed and "unlensed" jetted AGN give valuable observational constraints
that can directly test the standard model.

In this paper, we describe the contribution of VLBI to some current open issues in cosmology
related to AGN and their surrounding medium (Sec. 2), dark matter (Sec. 3) and dark energy
(Sec. 4). Finally, we conclude by discussing the role of current and future wide-field VLBI surveys
for observational cosmology (Sec. 5).

2. AGN and molecular gas at high redshift

How supermassive black holes (SMBHs) form and evolve is still unclear. The presence of
SMBHs of masses of 108−9 M⊙ when the Universe was less than a Gyr old [7, 8] supports models
of high mass BH seeds and super- (or even hyper-) Eddington accretion events. Some models
assume an initial phase dominated by BH-BH mergers lasting up to 𝑧 ∼ 6. After this epoch,
the accretion of the resulting SMBHs is believed to be driven by inflowing of their surrounding
medium (e. g., [9]). From an observational point of view, jetted AGN have been found in gas-rich
environments, which supports some of these models and at the same time suggests that mergers
could be the triggering of radio-loudness in AGN [10, 11]. Therefore, observations of the molecular
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gas surrounding jetted AGN can be a powerful method to test both SMBHs formation models and
the activation of the radio-loudness across the cosmic time.

Very recently, the James Webb Space Telescope (JWST) has opened a new frontier for the
study of high redshift galaxies, with a large number of candidates during the reionization epoch
(at photometric redshifts 𝑧 > 7, e.g. [12] and references therein). The observations with JWST
are suggesting even older and more massive SMBHs than expected, which require complex super-
Eddington growth [13, 14]. VLBI observations of jetted AGN are currently reported up to 𝑧 = 6.82
[15], finding jets extended from a few to several hundreds of parsecs [16–34]. As for the molecular
gas, at high-z detections of serveral J transitions of the CO and C+ emission lines have been reported
in the radio/mm bands [35–41], which revealed the presence of massive molecular gas reservoirs
around SMBHs, in agreement with the predictions from hydrodynamical simulations [e.g., 42, 43].
Moreover, detailed analysis of the profile of these emission line showed evidence for on-going
mergers in gas-rich radio-loud AGN at 𝑧 > 6 [44]. However, these results have been obtained
for the brightest high-z sources and these sources were only partially spatially resolved. In this
context, the magnification due to strong lensing is really powerful for detecting the low surface
brightness emission of the low-J transitions of CO at high redshift. This boost in spatial resolution
and sensitivity revealed both mergers (complex velocity fields) but also molecular gas disks (ordered
rotation) in jetted AGN at high redshift [40, 45–49].

As an intermediate stage of the merger process, we expect to observe binary (or multiple)
SMBH systems [50–52]. The interesting multiple SMBHs systems for the future pulsar timing
arrays and the Laser Interferometer Space Antenna are those at small separation, as they will be the
emitters of gravitational waves in the 𝜇Hz–nHz regime [53, 54]. The fraction of the active pairs of
SMBHs (binary/dual AGN) is very low in the local Universe, but it increases up to a few percent
at high redshift [55]. Hence, ideally, the search for close pairs of SMBHs should be performed
at 𝑧 > 1. Only VLBI can spatially resolve such systems on parsec scales even at large distances.
Indeed, using VLBI observations several pairs AGN have been found so far [56–61].

The combination of strong lensing and VLBI has been proven to be a powerful method to
unveil dual AGN candidates at high redshift and small separation. Three cases have been reported
so far: MG B2016+112 at 𝑧 = 3.273 [62, 63], PS J1721+8842 at 𝑧 = 2.37 [64] and PKS 1830-211
at 𝑧 = 2.5 [65]. As first suggested by [62], the detection of even a single strongly lensed binary
AGN implies a larger population of AGN pairs in the early Universe than first thought. However,
such estimate is highly limited by the very small number statistics, and these lensed (and unlensed)
candidates should also be confirmed. Nevertheless, VLBI provides currently the only way to find
the closest AGN pairs, hence probing the bound systems and the final merging stages at the largest
distances (as summarized in Fig. 7 of [66]).

3. Dark matter distribution at high-z

Among the current small-scale issues of the ΛCDM model, the most persistent ones are the
so-called missing satellite and the cusp-core problems [4, 67]. Both these observational-theoretical
conflicts could be solved by questioning the cold dark matter paradigm and assuming an alternative
("warm") dark matter particle [68]. Gravitational lensing provides a direct way to both find the
expected satellites orbiting around massive galaxies and infer the inner mass density profile to the
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the cusp-core problem. In particular, the strong lensing systems showing many extended images
in radial and tangential directions are ideal for such investigations. One can detect the sub-halos
associated with a lensing galaxy or along the line of sight by means of "anomalies" in the flux,
position or time delay in the lensed images. Such "anomalies" arise because the presence of a sub-
halo that locally changes the magnification of that image, hence its properties (in particular flux and
position) will be different from what expected for a smooth mass density distribution (i.e. without
sub-halos). For instance, [69] recently detected mas-level positional anomalies in the lensed images
positions inferred by VLBI observations in HS 0810+2554. This system shows eight extended
lensed images of a background AGN with intrinsic integrated flux density of only 880 nJy. Given
the angular scale of these astrometric perturbations, they could be due to a population of low-mass
(105−7 M⊙) dark matter dominated sub-halos. Milliarcsecond-level astrometric anomalies were
found also using global-VLBI observations of the lensing system MG J0751+2716, which shows
compact and extended lensed images forming giant gravitational arcs [70]. Therefore, also for this
system it is possible that the observed astrometric anomalies are due to low-mass sub-halos (see
also [71–76]). The inner density profile of MG J0751+2716 was inferred at high precision, thanks
to the many constraints from the VLBI-detected lensed images. The inner mass density profile
has been found to be steeper than isothermal: such steepening could be caused by the dissipative
process due to in situ star formation, which leads to an an increased stellar content in the central
regions of the lensing galaxy. Therefore, it is possible that the complex processes involving baryonic
matter might be responsible for the current tensions regarding the small scales of galaxies. Only
VLBI observations of extended gravitational arcs can test such complex models, as demonstrated
by [77, 78] for testing the origin of the astrometric anomalies in MG J0751+2716.

Despite the advantages of using gravitational lensing and VLBI to study astrometric anomalies
at mas and sub-mas level, we are currently limited by the small number of VLBI-detected sys-
tems. More strongly lensed jetted AGN observed with VLBI are needed to provide a conclusive
interpretation on these dark matter studies.

4. Cosmological parameters from jetted AGN observed with VLBI

The research field of using VLBI observations of AGN to infer cosmological parameters (such
as 𝑞0 and 𝐻0) has been pioneered by [79, 80]. They proposed a characteristic angular size 𝜃 for
compact jetted AGN to build a cosmic distance ladder. For a cosmological rod of intrinsic length
𝑙𝑚, the 𝜃-z relation can be written as 𝜃 (𝑧) = 𝑙𝑚/𝐷𝐴(𝑧), where 𝐷𝐴 is the angular diameter distance,
which depends on the cosmological parameters. This method was applied for the first time using
∼ 340 VLBI observations of AGN with known redshift by [81]. With these observations they
built a 𝜃 − 𝑧 plane up to 𝑧 ≃ 4 and could test different cosmological models (namely, different
values of 𝑞0), despite the large uncertainty given by the limited number of sources. Also, early
work of [82] proposed to measure the distance to jetted AGN by combining the observed proper
motion, Doppler factor derived from equipartition between the energy density in magnetic and
particles fields, and aspect ratio of the (superluminal) jet component. Recently [83] proposed to use
VLBI-detected AGN also to measure the cosmic curvature (Ω𝑘), finding no significant deviations
from a flat Universe. The caveat about these methods is whether it is possible to use jetted AGN as
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standard rods. For this reason, a lot of research has been done to find the best jetted AGN "category"
or some of their components for this cosmological application (see [84] and references therein).

Another methodology to test cosmological models is to measure jet proper motions (𝜇) across
the cosmic time, as 𝜇 depends on the cosmological parameters [85–87]. The difficulty of this
method is to obtain measurements of proper motions at high-z, as such measurements require long
time baselines and high signal-to-noise ratios. Nevertheless, such measurements have been obtained
up to 𝑧 ≃ 5.5 (e.g., [29, 33, 88, 89] and references therein). Recently, a reverse application of the
𝜇-z plot has been proposed, namely for deriving the redshift of a radio-loud AGN by adopting
the standard cosmological model [90]. This method will be particularly important for wide-field
surveys, where there are AGN candidates lacking spectroscopic redshift.

A method to estimate 𝐻0 is based on the variability of jetted AGN [91] and has been recently
used by [92] on the Boston University blazar monitoring programme [93]. The approach is based
on light travel-time ("causality") arguments, and can be extended from low- to high-z AGN. The
angular diameter distance 𝐷𝐴 can be also expressed as 𝐷𝐴(𝑧) = 𝑐Δ𝑡/𝜃VLBI(1 + 𝑧), where Δ𝑡 is
the variability timescale and 𝜃VLBI is the size of size of the variable region. By applying this
method on the low-z AGN 3C 84, they infer a value for 𝐻0 with a similar precision of other "late
Universe methods" applied to samples of sources (summarized in [94]), demonstrating that this
approach is a competitive cosmological probe. Recently, [95] revised the most important issue of
this methodology, which is the determination of the Doppler factor, which becomes more difficult
to obtain for high-z jetted AGN. The authors propose a method to derive the Doppler factor that is
independent from the typical equipartition and inverse Compton brightness temperature limits [96].

Finally, gravitational time delays observed in strong lensing systems provide a one-step mea-
surement for 𝐻0 [97], because the time-delay distance is inversely proportional to 𝐻0 [98]. Even
if time delays between the multiple images can be estimated also using a spatially unresolved light
curve (e.g., [99]), at the radio wavelengths i) VLBI can easily resolve the lensed images (typically
separated by arcseconds), ii) AGN show intrinsic time variability on several time scales and iii)
there is not the additional challenge of microlensing, as the (background) jetted AGN are typically
extended several parsecs in size. Despite the powerful combination of VLBI and gravitational time
delays, there has not been any time delay measured using VLBI yet. This is mostly due to the
high cadence of the observing epochs required and the relatively short periods for such monitoring
programs available (e.g., [100]). Instead, monitoring programs with the Very Large Array have
been proven to be quite effective for estimating gravitational time delays also by innovatively using
polarization [101–103].

5. Wide-field VLBI for cosmological probes and conclusions

Wide-field VLBI is now possible routinely. In the last ∼ 10 years, impressive progress has
been done to make this possible, and in particular the development of multi-phase centre correlation
(i.e., the entire primary beam of VLBI experiment can be imaged [104, 105]) and multi-source self-
calibration [106]. The progress in wide-field VLBI is timely, as there is the need to complement
current (and future) surveys with radio observations at sub-arcsec angular resolution. At the same
time, the exquisite sensitivity that wide-field VLBI surveys can reach now (e.g., 1.5 𝜇Jy beam−1 in
the eMERGE survey [107]) enables us to study at high image fidelity the faintest AGN population,
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which only the lensing magnification revealed so far [69, 108, 109]. Hence, wide-field VLBI
surveys can detect the different radio sources that are most suitable for each of the cosmological
applications described in this paper. For instance, the mJIVE-20 survey at 1.4 GHz [110] has been
used to search for radio-loud AGN in gas-rich mergers [111], to find strongly lensed jetted AGN at
small angular separation [112] and for the hunt for AGN pairs [113]. The same wide-field VLBI
survey has been also used for developing tools to identify and characterize VLBI sources with deep
learning [114]. Such tools together with pipelines for calibrating large VLBI datasets (e.g., [115])
are crucial for current and future wide-field VLBI surveys.

In summary, VLBI can provide precise and independent cosmological probes. In this paper, we
focused on how VLBI observations of AGN (lensed and unlensed) can test the current cosmological
model. Future surveys with the Square Kilometer Array (SKA) and the follow-ups with SKA-VLBI
will offer significantly improved sensitivity. In the future, we will not be limited by the small
number statistics anymore, but we will also need synergy with multi-wavelength instruments to
more robustly provide competitive precision on the estimate of the cosmological parameters.
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