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Fifteen years after its previous outburst, the symbiotic recurrent nova RS Oph exploded again on
2021 Aug 8th, its first outburst during the Fermi era. In symbiotic novae, the material ejected from
the surface of the white dwarf (WD) after the thermonuclear runaway drives a strong shock through
the dense circumstellar gas produced by the red giant (RG) wind. This nova is a perfect real-time
laboratory for studying physical processes as diverse as accretion, thermonuclear explosions, shock
dynamics and particle acceleration; in many ways it is like a supernova remnant on fast forward.
The experience of its previous outburst and that of 2010 for V407 (the symbiotic nova that has been
extensively observed during the Fermi era), indicates that a large sensitivity and a broad range of
baseline lengths are necessary to follow its evolution over a period of several weeks. This would
provide unique constraints on major outstanding problems, including the emission mechanisms,
the physical processes at work, the presence and location of shock acceleration, the geometry of
the system, and the density of the RG wind. We present preliminary results from the EVN+e-
MERLIN observations carried out on weeks/months time scales after the August explosion.
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The 2021 RS Oph outburst filmed by the EVN M. Giroletti

1. Introduction

In its basic description, the outburst of a classical nova is a thermonuclear runaway (TNR) event
occurring in the shell accreted by a white dwarf (WD) from a low-mass companion. In a symbiotic
binary, the WD is companion to and accretes from a red giant (RG), a powerful mass-loser, and
the circumstellar space is filled by its slowly expanding, dense wind extending up to great distances
(102 −103 AU). A nova eruption within a symbiotic binary is a rather spectacular affair: contrary to
classical novae, the fast ejecta expelled by the WD have to plough their way through the pre-existing
dense RG wind. In the process they are violently decelerated [e.g. 1], and the associated shocks
produce copious non-thermal emission from radio to high energy [e.g. 2–5], in addition to free-free
radiation from the ionized wind [6].

Given the high mass-transfer rate from the RG, and the WD mass approaching the Chan-
drasekhar limit, basically all symbiotic novae are recurrent on human time-scales. The typical
separation between eruptions is however above a decade, meaning that these events are rather
unique opportunities and that the observational landscape changes significantly from one outburst
to the next. For instance, no gamma-ray observations were possible for any nova before the advent
of Fermi. The first symbiotic nova observed in gamma-rays so far was V407 Cyg [5], for which
EVN and VLBA observations provided spectacular images of the shocked ejecta as they expand
through the RG wind [7, 8].

Among symbiotic novae, RS Oph holds the record of observed eruptions (in 1898, 1933, 1958,
1967, 1985, and 2006) but it never turned on during the Fermi era, until it was detected as a ∼ 5th
magnitude and gamma-ray bright object on 𝑡0 = 2021 Aug 8th [9]. Remarkably, even higher energy
(TeV) emission was soon detected with H.E.S.S. [10] and MAGIC [11], and not surprisingly the
source was intensively monitored in a variety of other bands [e.g. 12–14]. In radio, a first report
of activity was obtained between 1.4 and 15 GHz with MeerKAT, e-MERLIN and AMI-LA [15],
starting as soon as ∼ 1 day after the explosion; low-frequency observations up to day 222 are
reported in [16].

In the present paper, we show some preliminary results from the EVN+e-MERLIN campaign
that we carried out to follow the structural evolution. An in-depth comparison of one of our
observations with constraints obtained from optical spectroscopy is presented in [17], while a
more complete discussion of the results of the whole campaign will be presented in a forthcoming
publication. Throughout this work, we assume a distance 𝑑 = 2.68 ± 0.17 kpc, as reported by Gaia
DR3 [18], and therefore 1 mas ∼ 2.7 AU ∼ 4.0 × 1013 cm.

2. Observations

We observed RS Oph in 10 sessions (RG012A-J), grouped in five epochs (1−5), each consisting
of two runs observed in consecutive days, one at 5 and another at 1.6 GHz. The first observation
took place on 2021 Aug 22nd (𝑡0 +14 days) and the last one on October 12 (𝑡0 +65 days). A detailed
log of the observations is given in Table 1.

Each observation lasted for 8 hours. The observing bandwidth was of 256 and 128 MHz at
5 and 1.6 GHz, respectively. The corresponding data rates were of 2 and 1 Gbps, although some
stations were limited to a narrower bandwidth. The first four runs only used EVN stations, while for
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Epoch Code Date t − t0 Freq. Restoring beam Peak brightness Participating arrays
RG012- in 2022 (days) (GHz) (mas × mas, ◦) (mJy beam−1)

1 A Aug 22 14 5 5.5 × 4.6, −77.2 5.7 EVN (9)𝑎

B Aug 23 15 1.6 16 × 2.2, 80.2 16 EVN (7)𝑎

2 C Sep 1 24 5 11 × 6.8, −12.4 7.0 EVN (8)𝑎

D Sep 2 25 1.6 44 × 11, 10 21 EVN (8)𝑎

3 E Sep 11 34 5 12 × 9.4, −8.5 2.0 EVN (13)𝑎 + e-MERLIN
F Sep 12 35 1.6 34 × 9.1, 2.2 8.5 EVN (12)𝑎 + e-MERLIN

4 G Sep 26 49 5 . . .𝑏 . . .𝑏 EVN (14)𝑎 + e-MERLIN
H Sep 27 50 1.6 . . .𝑏 . . .𝑏 EVN (13)𝑎 + e-MERLIN

5 I Oct 11 64 5 9.0 × 5.1, −6.5 0.7 EVN (14)𝑎 + e-MERLIN
J Oct 12 65 1.6 45 × 13, −4.0 4.1 EVN (13)𝑎 + e-MERLIN

Table 1: Log of observations. Restoring beam and peak brightness refer to the images shown in Fig. 1
and should be considered as preliminary. (𝑎): values in parenthesis indicate the number of EVN stations
participating in each session. (𝑏): the runs from epoch 4 were affected by an hardware problem and are not
discussed here.

the last six observations also e-MERLIN outstations joined the array, to better probe the expanding
structure. We observed in phase reference mode, alternating scans on the target and on the nearby
(1◦.67 separation) calibrator J1745−0753. Data reduction was based on the JIVE pipeline, follwed
by standard hybrid mapping procedures in Difmap.

We would like to point out that this campaign pushed the network to its limits. A total of
80 hours of observations were carried out in Target of Opportunity mode over a time span of
51 days, starting in the middle of the summer and with very little anticipation. Since spectral
index information was critical for the interpretation of the emission mechanisms, but the source
was rapidly evolving, dual frequency observations in adjacent days were performed, challenging
the standard operation mode of the EVN. For these reasons, we wish to express our gratitude and
appreciation to the EVN Directors and Officers, and to all the personnel involved in the observations
at the stations and at JIVE.

3. Results and discussion

The source is detected in every observation, and we show preliminary images in Fig. 1. Already
in the first run, at 𝑡0 + 14 days, the structure is clearly extended, with a total size of about 20 mas
(28 AU), mostly distributed to the west of the extrapolated Gaia position. The total flux densities
at 1.6 and 5 GHz are 𝑆1.6 = 25 and 𝑆5 = 43 mJy, corresponding to a rising spectral index 𝛼 = 0.5
(𝑆𝜈 ∼ 𝜈+𝛼).

The total flux density increases in the following observations, peaking first at 5 GHz (in epoch
2) and later at 1.6 GHz (in epoch 3), and then decreasing as the source expands. The integrated
spectral index accordingly transitions to negative values, corresponding to a change to optically thin
emission.

In terms of morphology, starting from epoch 2, emission becomes detected also on the eastern
side, well separated from the core by a ∼ 20 mas gap, which we ascribe to absorption by a density
enhancement on the orbital plane [17]. In the third epoch, three main regions of emission are well
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Figure 1: Preliminary RS Oph images after the 2021 outburst. From top to bottom: epochs 1, 2, 3, and
5; left column: 5 GHz, right column: 1.6 GHz. Image maxima and restoring beam sizes are reported in
Table 1. The central white cross indicates the coordinates of the Gaia position.
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recognisable in the image, a central compact core in the proximity of the Gaia position, a brighter
western lobe and a fainter eastern one. A hardware problem with the e-MERLIN WIDAR correlator
resulted in the loss of short-baseline visibilities and a largely degraded image. While this prevented
us from obtaining accurate quantitative information, it remains a clear indication of the continued
expansion of the source. The fifth and final epoch indeed shows a largely resolved structure in
the outer lobes, with a total extension of about 180 mas (250 AU). The spatial distribution of the
spectral index in the spatially resolved images is not uniform, with the central component displaying
flatter values than the rest of the emission.

The overall structure, and its evolution, is remarkably similar to that observed after the 2006
outburst [2–4]. However, the availability of the Gaia position and its coincidence with the central
compact component allows us to interpret the data in a much clearer way. As discussed in [17],
we infer the presence of a strong density enhancement on the orbital plane, which is oriented
at 𝑖 = 54◦ inclination. This enhancement confines the nova ejecta into two lobes, expanding in
opposite directions normal to the plane, with the western lobe in foreground and the eastern lobe
in background. The bright central component could be the place of impact of the ejecta on the
inner radius of the density enhancement. Based on the size observed at the last epoch, the average
advance velocity on each side during the first 65 days is 6400 km s−1.

4. Conclusions and outlook

The EVN performed incredibly well under the rather extreme circumstances mandated by the
2021 RS Oph outburst: short lead time, intense monitoring, dual frequency, rapid observation
turnout. This confirms that astrophysical transients are and will remain an important area of impact
for the network in the coming years, as anticipated in the VLBI20-30 EVN science roadmap [19].
The preliminary results presented here and the comparison with the optical spectroscopy information
[17] indicate that this dataset will be extremely valuable in order to address open points such as the
identification of the loci of shock-acceleration resulting in high energy emission, the determination
of the geometrical configuration of the ejecta, and the discernment between free expansion and
deceleration induced by the sweep-up of the RG wind.
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