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Reconstructing images from very long baseline interferometry (VLBI) data with sparse sampling
of the Fourier domain (uv-coverage) constitutes an ill-posed deconvolution problem. It requires
application of robust algorithms maximizing the information extraction from all of the sampled
spatial scales and minimizing the influence of the unsampled scales on image quality. We present
novel multiscale wavelet deconvolution algorithms for imaging sparsely sampled interferometric
data. These new ideas are based on a novel, specially designed wavelet dictionary and hard
image thresholding in the spirit of compressive sensing. Compressing various spatial features
of the true sky brightness distribution by various scales provides a powerful way to analyse the
uv-coverage during imaging and improving the separation between covered features and features
introduced by gaps in the uv-coverage. We demonstrate the stability of our novel algorithmic
ideas and benchmark their performance against image reconstructions made with CLEAN and
Regularized Maximum-Likelihood (RML) methods using synthetic data. The comparison shows
that multiscalar approaches match the superresolution achieved by the RML reconstructions and
surpass the sensitivity to extended emission reached by CLEAN. Moreover, the imaging is largely
data-driven reducing the human induced bias during the imaging procedure. Finally, we present
some natural extensions to dynamic imaging, polarimetry and finally dynamic polarimetry.
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1. Introduction

1.1 VLBI

In Very Long Baseline Interferometry (VLBI) an array of radio telescopes, observing simul-
taneously a given radio source, is combined in an interferometric mode. The correlation of the
recorded signals at any pair of antennas in the array is the Fourier transform of the true sky brightness
distribution (visibility) with a Fourier frequency specified by the projected baseline of the antennas
as described by the van-Cittert-Zernike theorem [1]:

V(𝑢, 𝑣) =
∫ ∫

𝑒−2𝜋𝑖 (𝑥𝑢+𝑦𝑣) 𝐼 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 , (1)

where V are the observed visibilities at harmonic coordinates (𝑢, 𝑣), 𝐼 is the true sky brightness
distribution and 𝑥, 𝑦 projected spatial sky coordinates. The Fourier domain (uv-plane) is only
sparsely covered with observations (uv-coverage). The inverse problem, i.e. recovering an image
from the observed visibilities, is ill-posed. Additionally thermal noise, and several direction-
independent calibration effects culminated in multiplicative, station-based complex gain factors 𝑔𝑖
further complicate the problem. The observed visibility on a baseline separating the antennas 𝑖, 𝑗
is therefore [1]:

𝑉𝑖, 𝑗 = 𝑔𝑖𝑔
∗
𝑗V𝑖, 𝑗 + 𝑁𝑖, 𝑗 (2)

1.2 CLEAN

For the past decades CLEAN [2] was the preferred imaging method, mainly because its practi-
cality and its limited demand of computational resources. In CLEAN, the problem is reformulated
as a deconvolution problem [2]:

𝐼𝐷 = 𝐵𝐷 ∗ 𝐼, (3)

where 𝐼𝐷 is the dirty map (the inverse Fourier transform of the sparse observed visibilities) and 𝐵𝐷

the dirty beam (the response to an on-sky point source). CLEAN models the image as a set of delta
functions: in a first step the location of the maximum in the residual is searched, then a rescaled and
shifted dirty beam is substituted from the current residual at this location. These steps are repeated
until the final residual is noise-like. The list of delta components is convolved with the clean
beam (an approximation to the central peak of the dirty beam) and the last residual is added to the
reconstruction. CLEAN allows for manual data visualization and data manipulations strategy: by
defining special search windows (CLEAN windows), changing the tapering and weighting schemes
of the input visibilities, and self-calibrating the gain solutions alternating with imaging rounds.
However, CLEAN has well-known limitations:

• CLEAN introduces a disparity between the model that fits the observed visibilities (list of
delta components) and the final image (delta components convolved with the clean beam).
This is clearly unphysical as the final images produced by CLEAN do not fit the observed
visibilities anymore, e.g. compare the discussion in [3]
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• CLEAN does not introduce effective regularization and is therefore prone to overfitting the
data, in particular in the gaps of the uv-coverage, e.g. see the discussions in [3]. In fact,
the regularization of CLEAN relies on the user finding the correct stopping rule by hand,
compare [4].

• CLEAN typically requires supervision by a scientist introducing a significant human bias.

• CLEAN relies on an inverse modeling approach. Hence, the success of CLEAN relies strongly
on the success of the phase calibration. A forward modeling approach would be more salient
as it allows the direct use of calibration-independent closure quantities [5]. Moro ever, a
forward approach would allow straightforwardly to incorporate additional hyperparameters in
the reconstruction procedure such as gains, other polarimetric channels or prior distributions
[? ].

• The formal resolution of CLEAN is rigidly set by the precalculated restoring beam. However,
recent developements in super-resolution imaging in VLBI demonstrated that the CLEAN
beam might be too conservative [6? –9]. In fact, the theoretical model fitting resolution of an
VLBI array is much higher than the clean beam resolution, but only reachable if the range of
possible solutions is limited by strong prior assumptions [10]. Since CLEAN does not make
any reasonable prior assumptions compared to Regularized Maximum Likelihood (RML)
and Bayesian approaches, its resolution is worse compared to these more recent approaches.

• The representation of the image by a list of CLEAN components is disadvantageous for the
reconstruction of extended emission. [11]

• While CLEAN is relatively fast to apply since, after initialization, only subtractions of arrays
and list searches have to be applied in the minor loop, it does not scale up well to the data
science needs for the next generation of radio interferometers such as the SKA, ngEHT or
ngVLA. In particular, CLEAN does not make use of modern GPU accelerated computing
infrastructures.

1.3 Forward Modeling

More recently Regularized Maximum Likelihood (RML) methods have been proposed [5, 12–
14]. RML methods approach the imaging problem in a forward modeling framework. An objective
function, i.e. a weighted sum of data fidelity terms (measuring the fidelity of the fit to the observed
data) and regularization term (measuring the feasibility of the solution) is minimized:

𝐽 (𝐼) =
∑︁

data terms
𝛼D𝜒

2
D (𝐼) +

∑︁
regularizers

𝛽R𝑆R (𝐼) . (4)

Here 𝜒2
𝐷

are the data fidelity terms (i.e. the reduced 𝑐ℎ𝑖2 to the visibilities, amplitudes, or
closure quantities respectively) and 𝑆𝑅 the regularization terms (e.g. the 𝑙1 or 𝑙2 norm, a total
flux constraint or smoothness promoting total variation and total squared variation terms) balanced
by the regularization parameters 𝛼𝐷 , 𝛽𝑅 ∈ R. RML methods address most of the limitations of
CLEAN. They provide accurate reconstruction results, beat CLEAN in terms of resolution, and
avoid the disparity between model and image. However, these methods often rely on a number
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of non-trivial hyperparameters (the regularization parameters 𝛼𝐷 and 𝛽𝑅). In particular for RML
methods, this made the use of tedious parameter surveys necessary [6]. An unsupervised alternative
would be desired.

2. Multiscale Imaging with DoG-HiT

2.1 Rationale

While for current RML methods a wide range of hyperparameters needs to be evaluated
due to the combination of various data and regularization terms, could we step forward towards
unsupervised VLBI imaging by making the regularization term more data driven? This is the idea
behind DoG-HiT. DoG-HiT approaches the sky brightness distribution with a set of multiscalar
basis functions formulated as a dictionary of wavelet functions Γ = {Φ0,Φ1,Φ2, ...}. Γ acts on an
array of wavelet coefficients ℐ = {𝐼0, 𝐼1, ...} (where all 𝐼𝑖 are two-dimensional arrays of the size
of the true image 𝐼) by scale-wise matrix multiplication, i.e. Γℐ = Φ0𝐼0 +Φ1𝐼1 + .... The Fourier
transforms of these wavelets are multiplicative filters in the Fourier domain. Hence, the wavelets can
be fitted to the uv-coverage, with some wavelets encoding scalar information of Fourier coefficients
that were measured and some wavelets encoding scalar information of Fourier coefficients that were
not measured (gaps in the uv-coverage). In this way the wavelet dictionary allows for a separation
between observed and not observed scales in the visibility data. For imaging we want to fit the
observed visibilities (data-fidelity) with a clean model (i.e. no sidelobes) with the least number of
independent model parameters while no image features corresponding to Fourier coefficients in the
gaps in the uv-coverage should be induced. Hence, we proposed a compressed sensing approach
for DoG-HiT [7]:

ℐ̂ ∈ argmin
ℐ

[
𝜒2

cph(Γℐ, 𝑉) + 𝜒2
cla(Γℐ, 𝑉) + 𝛼 · ∥ℐ∥l0 + 𝑅flux(ℐ, 𝑓 )

]
, (5)

where ℐ is the array of wavelet coefficients, 𝛼 is the regularization parameter balancing the data
fidelity and sparsity promoting penalization, and 𝑅flux is an indicator function total flux constraint
for the total flux 𝑓 . Γ denotes the wavelet dictionary, and as before 𝑉 the observed visibilities. We
use the fit quality to the closure phases 𝜒2

cph and logarithm of closure amplitudes 𝜒2
cla respectively

such that the reconstruction is independent from station based gains. As visible from Eq. (5), we
compose the image from multiscalar functions that are fitted to the uv-coverage and use a sparsity
promoting penalization ∥·∥𝑙0 penalty term on the wavelet coefficients to suppress any wavelet scales
mostly sensitive to the gaps in the uv-coverage.

2.2 Wavelet Dictionary

There are two conflicting requirements for the construction of suitable wavelets. On one hand,
the wavelets should be orthogonal and define Heaviside masks in the Fourier domain such that they
can be optimally fitted to the uv-coverage. On the other hand, the wavelets should represent the
image physically reasonable, i.e. they should smoothly extrapolate into the gaps of the uv-coverage,
be free of sidelobes, and contain, if possible, only positive fluxes. In [7] we presented difference of
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Gaussian (DoG) wavelet function:

Φ
𝜎1,𝜎2
DoG (𝑥, 𝑦) = 1

2𝜋𝜎2
1

exp

(
−𝑥2 − 𝑦2

2𝜎2
1

)
− 1

2𝜋𝜎2
2

exp

(
−𝑥2 − 𝑦2

2𝜎2
2

)
=: 𝐺𝜎1 − 𝐺𝜎2 , (6)

as a plausible approach to construct such wavelets. 𝐺𝜎 denotes here a two-dimensional Gaussian
function in the image domain with standard deviation 𝜎. These wavelets have been extended
to directional-dependent wavelets by the difference of elliptical Gaussian functions in [3]. An
orthogonal set of directional-dependent wavelets was also introduced in [3] using the difference
of elliptical Bessel functions (DoB) instead of the difference of elliptical Gaussian functions. The
DoG- and DoB-wavelets are related such that the central peak of the DoB-wavelets is approximated
by DoG-wavelets. In [3] we proposed a switching scheme between these two different wavelet
dictionaries in a CLEAN framework to solve the conflicting requirements for the design of the
wavelet functions. By using a standard multiscale CLEAN minor loop with DoB-wavelets as basis
functions, we represent the initial residual (dirty image) by a list of DoB-wavelets. Then we replace
the DoB-wavelets by DoG-wavelets that approximate the central main lobe of the DoB-wavelets and
recompute the residual. Due to a proper selection of the multiscale components, the convolution
with a sidelobe-free clean beam (DoG-wavelets) takes place before the residual is updated, and
hence the disparity between the image and the model is solved [3].This strategy has been transferred
to DoG-HiT in [15]: the decomposition is done with DoB-wavelets, the minimization of Eq. (4)
with DoG-wavelets (see also our discussion in Sec. 2.3).

2.3 Imaging Strategy

While in principle Eq. (4) could be minimized directly, more accurate reconstruction were
obtained by a multiround imaging pipeline for Stokes I imaging first proposed in [7]. However, the
practical application of this approach [9, 16] has revealed the need to refine this imaging strategy
as follows:

1. First we find a proper initial guess.

• We do an unpenalized reconstruction with the software package ehtim first, i.e. we use
amplitudes, closure phases and closure amplitudes and deactivate any regularization
terms except for the total flux regularization. The computed solution 𝐼1 works as an
initial guess, but still shows imaging artifacts due to missing regularization.

• Next we find a multiscale representation of the initial guess. Due to the completeness
property DoB-wavelet dictionaries [3], it is a viable parametrization to copy 𝐼1 at every
scale, i.e. ℐ1 = {𝐼1, 𝐼1, ..., 𝐼1}

• Then we use a grid-search to find an initial guess for the minimization of Eq. (4).
The ∥·∥𝑙0 penalty term effectively computes a hard thresholding step (proximal-point
operator of the 𝑙0-norm). We therefore minimize Eq. (4) on a grid of predefined hard
threshold parameters, allowed to vary from scale to scale: ℐ2
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2. Now we do the DoG-HiT imaging step. Up to now DoB-wavelets were used to fit the observed
visibilities. Naturally we switch to DoG-wavelets now, as described in [3], by copying the
guess ℐ2, but replacing the dictionary. We then minimize Eq. (4) directly with the forward-
backward splitting algorithm developed in [7] and recover the guess image by applying the
wavelet dictionary Γ to the array of wavelet coefficients: 𝐼3 = Γℐ3.

3. The result can be further refined in alternate imaging and calibration rounds

• We calibrate the total flux, since the closure quantities are invariant against rescaling
array with a constant value. We compute the fit of the guess solution Γ

[
𝛿ℐ3] to the

amplitudes with a varying constant parameter 𝛿 ∈ R, peaking around the rescaling
parameter 𝛿best that is necessary to reach the correct total flux. Finally, we do phase-
self-calibration.

• As a byproduct of step 2 we get a representation of the multiresolution support [15].
It is expressed as a set of statistically significant wavelet coefficients [see 17, for an
application in astrophysical context]. This information is used in further imaging
rounds as constrained minimization prior, i.e. we fit the observed visibilities but vary
only coefficients in the multiresolution support.

• We add amplitudes to the array of observables and do imaging starting from 𝛿best𝐼
3 as

an initial guess with the constrained minimization approach with the multiresolution
support. After amplitude and phase calibration, we replace closure phases and closure
amplitudes by full visibilities and redo the minimization.

2.4 Dynamic Polarimetry

DoG-HiT has been extended to polarimetric and dynamic imaging [9, 15]. The multiresolution
support computed from the static, time-averaged Stokes I image by DoG-HiT is a strong prior
information for polarimetry and dynamic imaging. It compresses information about the uv-coverage:
the multiresolution support specifies where emission is located (support constraint) and which spatial
scales are significant to represent these features (multiscalar constraint). This prior information is
useful for polarimetry since all Stokes parameters have the same uv-coverage (multiscalar constraint)
and the fraction of linear and circular polarization is always smaller than one (support constraint).
Moreover, the same set of prior information is also desired for dynamic imaging as the uv-coverage
of the complete observation run is the sum of the much sparser uv-coverages of the single scans.
Hence, DoG-HiT is able to provide dynamic movie reconstructions and polarimetric images as
well with the same strategy that was used to refine the Stokes I images: fitting the (polarimetric)
visibilities scan by scan in a constrained minimization scheme, i.e. by only varying the coefficients
in the multiresolution support.

3. Conclusions

We benchmarked the performance of multiscale imaging (DoB-CLEAN variant of DoG-HiT)
against CLEAN in [7], see also Fig. 1. DoG-HiT performs better than CLEAN in terms of
accuracy and resolution. Moreover, DoG-HiT introduces an effective regularization through its
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sparsity promoting regularization approach and solves the disparity between a model and a final
image necessarily inherent to CLEAN reconstructions. Furthermore, we demonstrated in [3] that
multiscale and multidirectional wavelet sparsity approaches (such as DoB-CLEAN and DoG-HiT)
also have the potential to outperform CLEAN and classical MS-CLEAN [11] in terms of wide-field
imaging, i.e. in the uniform representation of extended emission. Hence, DoG-HiT effectively
deals with the most notorious limitations of CLEAN.

DoG-HiT presents a significant step towards unsupervised imaging. Since the regularization
term (sparsity of wavelet coefficients of a wavelet dictionary fitted to the uv-coverage) is data-
driven and chosen completely automatically, there is only one free parameter in the objective
functional (the regularization parameter 𝛼), thus making extended parameter surveys needless.
Moreover, benchmarking of DoG-HiT against state-of-the-art imaging RML methods demonstrates
that DoG-HiT allows for reconstructions of the same quality (resolution) or sometimes even better
quality than RML methods (extended emission, dynamic range), although the regularizer landscape
is considerably simpler. DoG-HiT requires the evaluation of a fast Fourier transform and an
application of multiscalar dictionary at every iteration. Since the wavelet dictionary has to be
allocated only once before the iterations start and the evaluation of the wavelet dictionary is
only a matrix-array operation, DoG-HiT remains comparable fast to RML methods, significantly
outperforming CLEAN.

DoG-HiT provides the multiresolution support as a byproduct and this has been proven ben-
eficial in the reconstruction of dynamic movies and polarimetric images [7, 15]. Hence, in a
straightforward manner DoG-HiT can also recover polarimetric movies without the introduction of
any additional regularization or temporal correlation terms. Thus, for these applications DoG-HiT
remains largely unsupervised despite the increased complexity of the reconstruction problem.

DoG-HiT is in active use for a wide range of ongoing (polarimetric) mm-VLBI projects such
as observations of 3C279, OJ287 and CenA with the EHT in 2017, or observations of 3C279 with
the GMVA in 2018 [18]. Moreover, it has been applied to lower frequencies for observations of
M87 with RadioAstron [16]. Furthermore, an application to the complete MOJAVE archive of
3C120 demonstrated convincingly the potential of DoG-HiT for survey observations: we were able
to reanalyze ∼ 100 epochs in roughly ∼ 15 minutes with the highly parallelized and fully automated
DoG-HiT algorithm and obtained images at higher resolution and comparable dynamic range [18].
Based on the success of DoG-HiT in this variety of observations, we expect great improvements
for EVN images. In particular, we expect improvements for combined EVN+eMerlin observations
since the wide range of accessible baselines (short baselines from eMerlin combined together with
the global baselines of the EVN) makes the use of a multiscalar algorithm that recovers large scale
structures and small scale structures in parallel necessary. This benefit is studied in particular in an
ongoing study of the Crab Nebula observed with the EVN+eMerlin array in 2022.

DoG-HiT and its extensions are publicly available as part of the MrBeam software package
under the url: https://github.com/hmuellergoe/mrbeam.
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