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Imaging Atmospheric Cherenkov Telescopes (IACT) of TAIGA astrophysical complex
allow to observe high energy gamma radiation helping to study many astrophysical
objects and processes. TAIGA-IACT enables us to select gamma quanta from the total
cosmic  radiation  flux  and  recover  their  primary  parameters,  such  as  energy  and
direction of arrival.  The traditional method of processing the resulting images is an
image parameterization - so-called the Hillas parameters method. At the present time
Machine Learning methods, in particular Deep Learning methods have become actively
used for IACT image processing. This paper presents the analysis of simulated Monte
Carlo images by several Deep Learning methods for a single telescope (mono-mode)
and multiple IACT telescopes (stereo-mode). The estimation of the quality of energy
reconstruction was carried out  and their energy spectra were analyzed using several
types of neural networks. Using the developed methods the obtained results were also
compared  with  the  results  obtained  by  traditional  methods  based  on  the  Hillas
parameters.

The 6th International Workshop on Deep Learning in Computational Physics (DLCP2022)
6-8 July 2022
JINR, Dubna, Russia

*Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

http://pos.sissa.it/
mailto:kryukov@theory.sinp.msu.ru
mailto:kryukov@theory.sinp.msu.ru
mailto:greseo@mail.ru
http://pos.sissa.it/
http://pos.sissa.it/


P
o
S
(
D
L
C
P
2
0
2
2
)
0
0
2

Energy reconstruction from TAIGA-IACT images E. O. Gres and A. P. Kryukov
using deep learning methods

1. Introduction

Gamma-ray astronomy is one of the most important area of observational astrophysics.
The study of processes occurring in such physical systems and processes as stellar explosions,
powerful high-velocity outflows forming in the vicinity of super massive black holes of active
galaxies and more are important for creating a complete picture of the Universe evolution  [1].
In addition, the list of tasks of modern gamma astronomy includes the experimental verification
of hypotheses of fundamental physics (for example, hypotheses about the nature of dark matter,
quantum gravity,  etc.).  Ultra high energy gamma radiation (tens and hundreds of TeV) is  a
unique source of information about the processes that occur in such astrophysical objects. 

Physicists develop new methods, create various installations and conduct experiments to
observe gamma radiation and measure its parameters (energy, direction of the arrival and more).
At present  it’s  possible to register  gamma-ray photons of ultra high energies only from the
Earth's  surface.  The  main  instruments  for  observing  gamma rays  are  Imaging Atmospheric
Cherenkov Telescopes  (IACT).  At  the  moment  there  are  several  experiments  (MAGIC,
H.E.S.S., VERITAS, CTA, TAIGA) that register gamma using IACT and analyze images using
traditional methods (the so-called Hillas parameter method) [2] – by parameterizing images and
imposing conditions on these parameters. Currently, the use of machine learning has also been
developed actively in image processing in gamma astronomy, which allows to analyze large
amounts  of  data  with  improved  results  compared  to  traditional  methods.  For  example,  in
MAGIC and H.E.S.S. the application of machine learning methods has shown promising results
in the problem of classification of registered by telescopes particles (i.e. selection of gammas
and hadrons) [3-6].

The objective of this work is to develop and study deep machine learning methods for
processing and analyzing TAIGA-IACT data. TAIGA-IACT is a part of the hybrid installation
TAIGA (Tunka  Advanced Instrument for cosmic  ray physics and Gamma  ray Astronomy)
located in the Tunka valley of the republic Buryatia near Lake Baikal [7]. These telescopes have
large spherical segmented mirrors with a camera consisting of photomultipliers (PMTs) in  the
focus of the mirrors. The camera is a matrix of almost 600 PMTs. The main processing task of
the TAIGA-IACT is to separate gamma events from the cosmic ray background and reconstruct
the  parameters of the primary particle.  Currently 3  telescopes have been installed and are in
operation.

It’s worth noting that research on the application of machine learning methods for this
installation was previously carried out in this works [8-12]. In these works neural networks of
the  same  configuration  were  considered  or  the  problem of  classifying  gamma events  from
hadrons  was  mainly studied.  And  in  general,  they aimed  to  demonstrate  the  possibility  of
applying these methods to solve problems of gamma-ray astronomy at a qualitative level. In this
work the analysis and energy reconstruction of Monte Carlo data will be carried out by several
deep  learning  methods  in  the  case  of  event  registration  by  one  (mono  mode)  and  several
TAIGA-IACTs (stereo mode).
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2. Model data

In the work a study was conducted on energy reconstruction based on labeled model data
generated  by  CORSIKA  [13].  The  description  of  the  datasets  used  and  their  division  into
training and test  sets  are presented in Table 1.  For the mono mode,  the problem of energy
reconstruction was considered in the case of set of mixed events (when events from gammas
and protons are presented in set) and in the case of a set of gammas only. In the case of stereo
mode, only gamma events were considered. Studying on gamma sets is due to the fact that an
attempt to recover energy for a mixed set gives large errors (this is outlined below), and also that
before  reconstructing energy all  recorded events  are  classified with subsequent  selection of
gammas.

Table 1. Description of model samples used in training and testing various deep learning methods under
different observation modes

Mode Total events (gammas/protons) Train/test separation Energies, TeV

Mono
200 000

(100 000 / 100 000)
160 000 / 40 000

Protons: 5-100
Gammas: 2-50

Stereo

30 000 – mono
14 800 – «stereo-2»
7 700 – «stereo-3»

(only gammas)

Separation 3:1 in
each case

1-50

As can be seen from the table, the training sample of the stereo mode has quite a few
thousands events, so it was expanded by mixing the input images. For example, in the case of
two telescopes,  one event  has two images,  one of  which belongs to the  first  telescope,  the
second - to the second IACT. When shuffled, it was assumed that the first image is now the
image of the second telescope and vice versa. This approach is valid in the case of telescopes
that do not differ much from each other in their structure and internal event triggers. In our case
these conditions are satisfied.

The images were also pre-processed, which included cleaning, pixelation and logarithmic
scaling. When cleaning, the noise pixels in the image were reset to zero. The cut-off threshold of
cleaning was 3  photoelectrons. The need for pixelation is due to the fact that  deep learning
methods used for image processing (so called  convolutional neural networks) are not able to
work with hexagonal  image structure.  The hexagonal  image structure is a consequence of the
use of PMTs in the IACT camera. There are a lot of way of transition to rectangular images, in
our  work  we  apply  axial  coordinate  transformation [14,  15].  With  logarithmic  scaling  the
amplitudes of pixels xi were transformed as follows:

x̃i=
1
K

ln (1+ xi) (1)

where i is a number of pixel in the image, x̃i  is scaled pixel amplitude. Normalization constant

K is  associated  with  the  maximum  possible  value  of  the  pixel  amplitude  and  brings  the
amplitude into the range of values from 0 to 1 to improve the training of neural networks. For
our case K is equal to 9.
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3. Deep learning methods

Machine  learning  is  a  scientific  discipline  that  uses  a  sample–based  learning  method
instead of explicitly programming a computer system. Deep learning implies machine learning
using neural networks (NN) – multilayer graphs, where a mathematical model of a neuron is
located at the node of each graph [16, 17].

Figure 1: Schematic architectures of convolutional neural networks applied in the work for data analyses
of mono-mode (a-c) and stereo-mode (a,d-e): a) User linear CNN; b) Simplified ResNet; c) Simplified
GoogLeNet; d) Multichannel User CNN; e) Simplified DenseNet

To process telescope images convolutional neural networks (CNNs)  [17, 18] were used,
the structures of which for  the cases of  mono- and stereo-mode are shown in Figure 1.  The
architectures  were  written  in  Python  using  TensorFlow  and  Keras  libraries  [18,  19].  The
initialization  of  the  weights  is  the  uniform initialization  of  Xavier,  the  activation  function
between layers for User models is ReLU. On the output layer, the activation function is linear,
the error function was defined as the mean squared error. The figure  1 shows that along with
User CNN ResNet [20], GoogLeNet [21] and DenseNet [22] structures were considered. These
architectures have shown some of the best results in image classification [22, 23] and they use
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various  methods  of  layers  connection to  stabilize  and  improve  training.  However,  for  an
adequate comparison with the User model, their structures were simplified so that the number of
weight coefficients for each network was approximately 2 million.

GoogLeNet and ResNet structures were used to analyze mono-mode data, the linear User
model  was  modified  for  stereo  mode  (see  Fig.  1,  d)  by adding  additional  input  channels.
Multichannel User model was used in stereo mode processing together with the linear User
CNN and DenseNet. For linear models with a single input, images from several telescopes were
overlaid  on  each  other  with  coinciding  the  center  of  the  cameras  and  summing  the  pixel
amplitudes. The overlay occurred after the images were cleaned, after which they were pixelated
and scaled by (1).

4. Energy reconstruction results

The energy reconstruction by the above-described CNNs structures was considered in two
cases of event  registration:  mono mode and stereo mode.  To indicate how many telescopes
registered  the  event  at  the  same  time,  the  «stereo-N» mode  will  be  abbreviated,  where  N
indicates the number of triggered telescopes. For estimation of the energy reconstruction quality
of each event and the energy spectrum as a whole, the relative error  Rel_err and criterion  χ2

were used, respectively:

trueE

trueEpredE
  Rel_err


 , (2)

χ
2
=∑

i=1

k ((crec)i−(cMC )i )
2

(cMC )i
(3)

where Epred is an energy predicted by CNN, Etrue is true energy value of event, k  is the number of
bins  in  the  spectrum  histogram,  crec is  the  number  of  events  in  bins  in  the  case  of  the
reconstructed spectrum, cMC  is the number of events in bins of the model spectrum.

4.1 Mono mode

When considering the issue of energy recovery for the set with mixed events, a linear User
CNN was  trained  and tested.  The  median  relative  error  is  31% in  this  case.  When  energy
reconstructed  only  for  gamma  events,  the  quality  of  energy  reconstruction  is  noticeably
improved (Fig. 2): the median relative error is reduced to 22-26% (the best result is achieved
with the GoogLeNet). Strong deviations are observed at the edges of the spectrum associated
with the approximating function of  neural  networks when reconstructing the spectrum.  The
criterion χ2 reaches values of the order of several thousand. However, results demonstrated that
a good matching of the spectra is observed in a narrow energy range. 
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(a)

(b)

Figure 2: Energy spectrum reconstruction of gamma events (a) and relative error distribution (b) with
different CNNs in case monoscopic observations of TAIGA-IACT

4.2 Stereo mode

When studying the quality of energy recovery in mono and stereo modes, a Multichannel
User  CNN was  applied.  The  results  of  the  spectrum reconstruction  and the  distribution  of
relative errors are shown in Figure 3. The estimation showed that the χ2  values in mono mode
are 1 546, in the case of «stereo-2» – 495, in «stereo-3» – 156. The relative error decreased from
26% to 15%.

We also wanted to see if it was possible to improve the reconstruction accuracy in the
stereo mode with other CNN models, therefore, further we considered only the «stereo-3» mode
and the previously mentioned linear User CNN and DenseNet (see Fig. 1, a and Fig. 1, e). To
compare the models we had to modify the multichannel CNN by adding three dense layers in
the input channels before they were connected (the number of neurons: 440, 170 and 70) and
reducing the number of neurons in dense layers after the connection (their number became 100,
40 and 1). Thus, the number of weight coefficients in multichannel CNN decreased by 10 times.
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(a) (b)

Figure 3: Energy spectrum reconstruction of gamma events (a) and relative error distribution (b) with
multichannel user CNNs in case stereoscopic observations of TAIGA-IACTs

Reconstruction results are shown in Figure 4. It can be seen that each of the CNNs gives
small differences in the reconstruction of the spectrum shape, while in determining the relative
errors in  the reconstruction of  each event DenseNet significantly reduces the error:  it has
become 12%.  The form of data submission gives a slight improvement in  the result of user
networks:  an improvement in spectrum reconstruction is seen (the χ2 criterion has decreased
from 156 to 87), but the error doesn't decreased (also 15%).

(a)

(b)

Figure 4: Energy spectrum reconstruction (a) and relative error distribution (b) with different CNNs in
case stereoscopic observations  with three TAIGA-IACTs («stereo-3»-mode)
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5. Comparison of deep learning method and traditional energy reconstruction 
method

To estimate the possibility of applying the deep learning methods to experimental data
results were compared with the traditional reconstruction method. The dependence of the event
energy on some Hillas parameters, such as image brightness, the distance of the spot center of
gravity from the camera center, and also on some  extensive air shower (EAS) characteristics
(the  height  of  the  EAS  maximum,  etc.)  is  searched  in  the  traditional  method  of  energy
reconstruction  by  analyzing  Monte  Carlo  data  for  each  telescope  [24].  After  tables  of
correspondence between Hillas parameters and energy are compiled.

(a)

(b)

Figure 5: Comparison of energy spectrum reconstruction (a) and relative error distribution (b) using deep
learning (Multichannel User CNN, red color) and traditional reconstruction methods (green color)

A new simulated dataset was obtained: this set included joint events from five telescopes
(approximately 5 thousand events per pair), only a pair of IACT#1 and IACT#2 were processed
with traditional method [25]. The energy range for these events ranged from 25 to 200 TeV. 1/3
of the events of the IACT#1 and IACT#2 pair were taken as a test set. However, to expand the
training sample, events were taken from other pairs of telescopes that were at the same distance
from each other (approximately 320 m). Thus, the training and test sample consisted of 16 620
and 1 598 events, respectively. 

A two-channel User CNN was selected for training (see Fig. 1, d, instead of three inputs
there are two of them). The regression results are shown in Figure 5. From the quantitative
evaluation of the spectra it can be seen that CNN result demonstrate a good agreement with the
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results of the standard method, but the median error in determining the event is slightly worse:
13% compared to 9%. It’s worth noting that the User model was used, so it’s possible that when
using the above structures and another data submission (overlaying images of several telescopes
on one), the relative errors will be approximately the same as with standard methods.

6. Conclusion

Deep learning methods for processing and analysis the TAIGA-IACT data was applied in
this work. Along with the usual linear architectures of convolution neural networks, which were
considered in  previous works on the application of  machine learning to  the  images of  this
installation,  well-known  ResNet,  GoogLeNet  and  DenseNet  structures  were  programmed,
trained and tested to solve the problem of energy reconstruction in the processing and analysis
the  TAIGA-IACT  data. Also  for  TAIGA-IACT  this  is  the  first  attempt  to  study  the
reconstruction of energy spectra using CNNs. Comparison of the results of each CNN showed
that for the best reconstruction cases  (GoogLeNet and DenseNet structures) the relative error
reaches 22% in monoscopic observations, while in stereoscopic observations with two and three
telescopes the error decreases  to 19% and 12%, respectively.  When the energy spectrum is
reconstructed in mono mode, distortions are observed at the edges of the spectrum, which are
significantly reduced in stereo mode.

Deep learning energy reconstruction was also compared with the traditional IACT image
processing method based on the Hillas parameter method. Comparison was successful and it
was   demonstrated  that  deep  learning  reconstructed  spectrum  is  in  good  agreement  with
reconstructed spectrum of the traditional method and model spectrum. However, the comparison
of relative errors for each event showed that deep learning is slightly inferior in terms of the
quality of reconstruction to the traditional method. We believe that reconstruction accuracy will
be  improved  by  more  subtle  settings  of  neural  networks  (for  example,  by  changing  the
numerical parameters of the network and connections between layers). Also to improve results
obtained it is planned to increase training datasets by increasing the number of training samples,
and by expanding the energy range.
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