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High-energy particles hitting the upper atmosphere of the Earth produce extensive air showers
that can be detected from the ground level using imaging atmospheric Cherenkov telescopes. The
images recorded by Cherenkov telescopes can be analyzed to separate gamma-ray events from
the background hadron events. Many of the methods of analysis require simulation of massive
amounts of events and the corresponding images by the Monte Carlo method. However, Monte
Carlo simulation is computationally expensive. The data simulated by the Monte Carlo method
can be augmented by images generated using faster machine learning methods such as generative
adversarial networks or conditional variational autoencoders. We use a conditional variational
autoencoder to generate images of gamma events from a Cherenkov telescope of the TAIGA
experiment. The variational autoencoder is trained on a set of Monte Carlo events with the
image size, or the sum of the amplitudes of the pixels, used as the conditional parameter. We
used the trained variational autoencoder to generate new images with the same distribution of
the conditional parameter as the size distribution of the Monte Carlo-simulated images of gamma
events. The generated images are similar to the Monte Carlo images: a classifier neural network
trained on gamma and proton events assigns them the average gamma score 0.984, with less than
3% of the events being assigned the gamma score below 0.999. At the same time, the sizes of
the generated images do not match the conditional parameter used in their generation, with the
average error 0.33.
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1. Introduction

Extensive air showers produced by high-energy cosmic rays and gamma quanta hitting the upper
atmosphere of the Earth can be detected using imaging atmospheric Cherenkov telescopes (IACTs).
The images from Cherenkov telescopes are used for analysis of the events, most importantly, for
identifying the type of the primary particle. Gamma quanta are of interest in gamma-ray astronomy,
but background cosmic ray events are at least three orders of magnitude more common so the
classification tools need to have very high specificity. A widely used approach to the analysis of
the Cherenkov telescope images is comparing them with simulated images of air showers with
known parameters of the primary particles generated by Monte Carlo method. Thanks to recent
advancements in machine learning, this approach is particularly attractive because the generated
images can be used as the training data for supervised learning. Machine learning methods often
show better results with large numbers of training examples, but Monte Carlo simulation has high
computational costs. It is possible to augment the training data using a smaller data set to generate
more imageswithout theMonteCarlomethod, for example, by using generative adversarial networks
(GANs) [1]. This approach is not limited to gamma-ray astronomy: for example, it was used by the
ATLAS experiment at the Large Hadron Collider [2].

We use machine learning tools to generate additional images for Cherenkov telescopes of the
TAIGA experiment [3]. In [4, 5] generative adversarial networks were trained to generate TAIGA
IACT images of gamma and proton events. In this work, we present preliminary results of using
conditional variational autoencoders to generate images of gamma events.

A variational autoencoder (VAE) [6] is an artificial neural network that consists of two com-
ponents: an encoder and a decoder. They are trained together to learn a distribution of a set of
latent variables corresponding to the distribution of the training data, that can be used to reconstruct
the input data with minimal losses. VAEs can be used to generate new data points from the same
distribution as the training set. They have a potential advantage over GANs in allowing for easier
interpretation of the variables used to generate new data points [7]. Conditional variational au-
toencoders (CVAEs) [8] add explicitly known parameters to the latent parameters. The conditional
parameters can be either discrete like the type of the primary particle, or continuous like the energy
of the event. It is also possible to enforce a condition as a constraint if it can be explicitly calculated
from the data (see [9] for constrained GANs).

2. Methods

The architecture of the conditional variational autoencoder we use is presented in Figure 1.
The amplitudes � of the 560 pixels of the input image are scaled using the function

log(1 + �)
log(1 + �<0G)

where �<0G is the amplitude of the brightest pixel in the training set. The encoder and the decoder
of the CVAE both have three fully connected hidden layers with 128, 256, and 384 neurons (reverse
order for the encoder). The encoder output is two 2-dimensional vectors which are interpreted as
the expected values and the logarithms of variance of the hidden parameters. A conditional variable
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is added to the input of both the encoder and the decoder. The logarithm of the image size (the sum
of the amplitudes of the pixels) is used as the condition.

Figure 1: The architecture of the conditional variational autoencoder for 560 pixel images. The conditional
parameter added to the inputs is highlighted in yellow.

We used a set of 39443 images of gamma events with the energy between 1.5 TeV and 60 TeV
generated by a Monte Carlo simulation program CORSIKA [10] for the Cherenkov telescopes of
the TAIGA experiment. A cleaning procedure [11] was applied to the images, excluding all image
pixels that were not a part of a pixel cluster with at least one pixel with the amplitude above the
core threshold value of 6 photoelectrons, and at least one neighbor pixel with the amplitude above
the neighbor threshold value of 3 photoelectrons. The resulting images had sizes ranging from 23
to 6064 photoelectrons. Out of these images, a training set of 29568 was randomly selected, and
the remaining images were used as the test set.

The variational autoencoder was implemented in TensorFlow [12] and trained for 5000 epochs
on the training set using the TensorFlow implementation of the Adam optimizer [13].

3. Results

Figure 2 shows five of the original Monte Carlo events on the left side, and the respective
images reconstructed by the variational autoencoder on the right side. The examples of images
generated by a the trained variational autoencoder are shown in Figure 3. The values of the code
variables G and H correspond to the cumulative probabilities 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95 of
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Figure 2: The comparison of five original Monte Carlo events (left) with their reconstructions by the
conditional variational autoencoder (CVAE) (right). The centers of the cameras are marked by cross hairs.
P.e. is short for photoelectrons. (The color version of the figure can be found in the online version of the
paper on the journal’s website.)

the normal distributionN(0, 1), the values of the conditional parameter B correspond to the median
and the maximum sizes of the Monte Carlo images: 145 photoelectrons and 6064 photoelectrons,
respectively. Figure 4 shows the changes to the images generated from the same code when the
conditional parameter B is varied.

The sizes of the images generated by the conditional variational autoencoder tend to be smaller
than the values of the conditional parameter B. For a sample of events generated with the code
(G, H) sampled from the normal distribution N(0, 1) and the conditional parameter B having the
same distribution as the size of the Monte Carlo events, the average relative error | B8I4−B

B
| is 0.33.

Figure 5 shows the relative size shift for a similar sample of 1000 events. This discrepancy can be
corrected by turning the conditional parameter into a constraint. However, a more simple approach
is to increase the parameter B by a fixed factor to get images close to the desired size, because the
size shift is relatively consistent: the correlation coefficient of the parameter B and the size of the
generated images in this sample is 0.946.

Other than the diminished size, the images generated by the CVAE generally superficially look
similar to the images of Monte Carlo-simulated gamma events: they have approximately elliptical
shape pointing towards the center of the camera. This is confirmed by a classifier neural network
[14] trained on the same training set plus 22751 proton events: 97.1% of the images are assigned
the gamma score above 0.999, and the average gamma for the sample is 0.984, compared to 0.99
assigned to the Monte Carlo gamma events not used in the training set of the classifier. The
distribution of the gamma scores is shown in Figure 6.

4. Conclusion and further research

We have trained conditional variational autoencoders on a set of TAIGA Cherenkov telescope
images of Monte Carlo-simulated gamma events. The resulting autoencoder can be used to generate
new images that are similar to the gamma event images: in particular, a classifier neural network
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Figure 3: Images generated by the CVAE decoder from the code (x,y) using the conditional parameter B.

assigns them the average gamma score 0.984. The conditional parameter B was based on the sizes
of the training images, however, the size of the generated images does not match the values used as
the decoder input. The average relative error is 0.33, with most of the events having lower size than
the parameter B.

The possible directions of further research include enforcing a constraint on a variational
autoencoder to make the generated image parameters match those used as conditions and using
convolutional layers. We also plan to use CVAE-generated images to augment training sets for the
neural networks used for image analysis, in particular, event type classifiers.
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Figure 4: Images generated by the CVAE decoder from given inputs. P.e. is short for photoelectrons.

Figure 5: The relative size shift by the CVAE: B is the value of the conditional parameter and size is the sum
of the pixel amplitudes in the generated image.
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Figure 6: The distribution of the gamma scores by the classifier neural network for Monte Carlo events and
the CVAE-generated events.
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