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The TAIGA experimental complex is a hybrid observatory for high-energy gamma-ray astronomy
in the range from 10 TeV to several EeV. The complex consists of such installations as TAIGA-
IACT, TAIGA-HiSCORE and a number of others. The TAIGA-HiSCORE facility is a set of
wide-angle synchronized stations that detect Cherenkov radiation scattered over a large area.
TAIGA-HiSCORE data provides an opportunity to reconstruct shower characteristics, such as
shower energy, direction of arrival, and axis coordinates. The main idea of the work is to apply
convolutional neural networks to analyze HiSCORE events, considering them as images. The
distribution of registration times and amplitudes of events recorded by HiSCORE stations is used
as input data. The paper presents the results of using convolutional neural networks to determine
the characteristics of air showers. It is shown that even a simple model of convolutional neural
network provides the accuracy of recovering EAS parameters comparable to the traditional method.
Preliminary results of air shower parameters reconstruction obtained in a real experiment and their

comparison with the results of traditional analysis are presented.
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1. Introduction

In the high energy range (from 10'3 V), gamma rays and charged cosmic rays can be analyzed
by studying the air showers they induce in the atmosphere. When the primary particle reaches the
atmosphere and interacts with its atoms, it produces a cascade of secondary particles along the path
of the primary cosmic ray emitting Cherenkov light. Such a cascade of particles is called extensive
air shower (EAS). The development of an extensive air shower depends on the characteristics of
the primary particle: on its energy, the direction from which the cosmic ray came, and the type
of particle. These parameters are of fundamental importance not only for studying extensive air
showers, but also for studying processes using the methods of gamma astronomy and the physics of
charged cosmic rays.

In this paper, we propose the use of deep learning technologies to determine the energy of the
primary particle and the direction of the EAS axis for events recorded by the TAIGA HiSCORE
observatory - an array of Cherenkov detectors.

TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) is a hybrid
observatory for studying the physics of high and ultrahigh energy cosmic rays, located in the
Tunka Valley, 50 km from Lake Baikal [1]. This experiment is a complex system for ground-
based astronomy from several TeV to several EeV. The observatory includes Cherenkov telescopes
TAIGA-IACT, an array of wide-angle Cherenkov stations TAIGA-HiSCORE, an array of Cherenkov
detectors Tunka-133, muon and electron detectors TAIGA-Muon and Tunka-Grande, which are an
array of aboveground and underground scintillator counters, as well as detectors Tunka-REX radio
emission. The use of several different types of detectors provides possibilities for multimessenger
analysis of extensive atmospheric showers.

TAIGA-HiSCORE [2] is an array of wide-angle Cherenkov stations for studying cosmic rays
and gamma-ray sources. The HiSCORE stations register EAS Cherenkov photons, as well as the
signal arrival time. The advantages of the TAIGA-HiSCORE array is a large area for collecting
statistics of about several kilometers and, at the same time, high sensitivity of the stations.

2. Deep learning method for TAIGA-HiSCORE experiment

Reconstruction of the parameters of extensive air showers, the study of their composition and
the energy of the primary particles are important problems in cosmic ray physics and gamma-ray
astronomy. To reconstruct EAS parameters, we propose to use machine learning technologies, and,
in particular, deep learning. Deep learning methods have shown their effectiveness in physical
problems and, in particular, in problems of gamma astronomy. For example, in [3], convolutional
recurrent neural networks were used to clean images from background noise, determine the EAS
direction and the energy of the primary particle in Cherenkov telescope events. Deep learning meth-
ods were also used in the TAIGA experiment to analyze TAIGA-IACT events [4]. Convolutional
neural networks have shown their high efficiency in gamma-hadron separation and determining the
energy of an EAS primary particle compared to traditional methods. However, unlike the arrays of
pixels that make up the image of Cherenkov telescopes, the array of Cherenkov stations is sparse,
since each of the stations is located a hundred meters from each other. Also, a distinctive feature of
the problem under study is the ability to read both the amplitudes of the recorded signals and take
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Figure 1: a: An example of an EAS event modeled for the HISCORE array. The color indicates the time
of registration of the particle, the value of the dot corresponds to the value of the signal amplitude. b: The
array of station coordinates is reduced to a rectangular shape by adding points with zero values and rotating
the coordinate axes by 45°. Added points are marked in orange.

into account the signal registration time. The novelty of the data processing of the TAIGA experi-
ment in this work lies in the use of multimessenger analysis along with deep learning technologies.
In the proposed method, we present the arrays of data received from HiSCORE stations as images.
The image may consist of signal registration time data or signal amplitude data. Working with
the signal registration time data, we look for a time isoline and use it to reconstruct the direction
of the shower axis. Deep learning technologies can be used to determine the time baseline. In
particular, we propose the use of convolutional neural networks to reconstruct EAS parameters. For
training and validation during the learning process of the convolutional network, model data sets
obtained using the CORSIKA program (COsmic Ray SImulations for KAscade) were used. This is
software for detailed simulation of extensive air showers based on the Monte Carlo simulation [5].
To train and evaluate the performance of the model, the work uses Monte Carlo simulation data for
an array of HiISCORE Cherenkov arrays from 2014. In addition to modeling EAS development,
the responses of Cherenkov stations were simulated for the HISCORE array for 44 stations. The
distance between "neighboring" detectors is approximately 106 m. The data for each Cherenkov
station that registered an event are information about the signal registration time, signal duration
and its amplitude. Only those events in which at least four stations were triggered were selected. In
total, the sample consists of 12216 events. 816 events were selected to evaluate the effectiveness of
the model, the model was trained on 11400 events.

In order to take full advantage of the method of convolutional neural networks, which are
specialized in local pattern recognition [6], and achieve good stability and network optimization
efficiency, the data is converted into formats suitable for the neural network. An EAS event
registered by identical detectors can be considered as a pixelated image. In images, pixels usually
form a Cartesian grid, so to bring the array to a rectangular shape, it suffices to rotate the coordinate
axes of the stations by 45°. Since the input of the convolutional neural network is a two-dimensional
array, the array of 44 stations is supplemented with points with zero values, as shown in Figure 1.
Thus, we get an array of dimensions (10 X 8).
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The scheme of our CNN model is presented in Figure 2. Our model is a sequential convolutional
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Figure 2: The proposed neural network architecture.

neural network with four convolutional layers and six dense layers on top of it. The input layer
contains 80 feature maps; on each subsequent convolutional layer, the number of feature maps is
halved. In the convolutional layers feature extraction takes place, while in the dense layers linear
regression is performed. Several model architectures have been tried, including those that use the
pooling method and architectures with different kernel sizes, but the efficiency of such models was
not higher than that proposed. We chose ReLLU (Fig.3.a) as an activation function on all layers since
the values of angles are positive. Table 1 details the CNN parameters. To implement the model, the
work uses the TensorFlow [7] and Keras [8] libraries, used for machine learning on Python 3.1.1.
This model could be adjusted to determine other parameters, such as energy and air shower axis
coordinates.

Table 1: Model parameters.

Kernel size 2x2
Learning rate 0.001
Number of model parameters 135,402
Optimizer ADAM (Adaptive Moment Estimation)
Loss MSE = Lyn(ytrue —ypredy2
Padding ‘same’
Batch size 15 events
Number of epochs 50
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Figure 3: a: Activation function ReLU b: Error function plot during model training for training and test sets

3. Results

The figure 3.b shows a plot of the error function during model training. Overall, the model
demonstrated total loss of MSE = 2.80 for two parameters. Let‘s take a closer look at results for

each parameter. We will estimate the deviations from the expected values using the mean absolute
error function (MAE):

MAE = |ytrye _yl)red|

The table 2 shows the average absolute errors of the zenith and azimuth angles. Errors for events

EAS parameter | Mean absolute error
zenith angle 6 0.97°
azimuth angle ¢ 1.38°

Table 2: Mean absolute errors of zenith angle 6 and azimuth angle ¢

with different numbers of triggered stations can vary significantly. Let’s divide our dataset into
events with the number of triggered stations more than ten and less than ten. Two parts of the
sample contain 2684 and 9532 events, respectively. Mean absolute errors for events with number
of triggered stations below ten and above ten are shown in the Table 3:

Table 3: Errors for events with the number of triggered stations less than 10 and more than 10:

EAS parameter | Mean absolute error
Less than 10: Z?mth angle 6 1.34
azimuth angle ¢ 1.68°
ith 1 85°
More than 10: Zémt angle 6 0.85
azimuth angle ¢ 1.12°

The graphs on Figure 4 show the distributions of errors in the azimuth and zenith angles in
determining the EAS direction.
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Figure 4: a: Error distribution for zenith angle 6. b: Error distribution for azimuth angle ¢

The graphs on Figure 5 show the energy spectrum of Monte Carlo events that used to train the
model and evaluate its performance, and the energy spectrum reconstructed by the neural network.
The spectra were approximated by the following function:

AN E
G (2 Ey=1TeV,
dE fO(EO) 0 ev

fo— normalization coefficient, the value of which depends on the experiment, while a is a photon
index, the value of which is most significant for the analysis of energy distribution. Distribution

type taken from work [9]
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Figure 5: a: MC energy spectrum. b: CNN-reconstructed energy spectrum. The dotted red line corresponds
to the approximation of points with energies greater than 90 TeV

The Table 4 shows the power-law parameters of the obtained spectra and the power-law
parameter of the Crab Nebula spectrum fit from [9]
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Table 4
dN | dE spectra a parameter | Red. Chi-Sq
MC spectrum -2.83+0.11 1.628
CNN-reconstructed spectrum | —2.55 £ 0.14 2.619
MAGIC spectrum -2.47+£0.01 1.818

4. Conclusions

In this paper, we have demonstrated the possibility of using deep learning methods to determine
the parameters of extensive air showers. The proposed model, which is a convolutional neural
network, can be applied to determine the zenith and azimuth angles of the EAS axis. A deep
learning method for energy spectrum reconstruction is also proposed. The trained convolutional
neural network makes it possible to determine the zenith and azimuth angles of the EAS axis
with an average accuracy of about 1 degree. The deep learning method shows good results in the
reconstruction of the EAS energy spectrum - the slope of the spectrum reconstructed using a neural
network is in good agreement with the MAGIC experiment.
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