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Neuromorphic classification of RF-Modulation type is an on-going topic in SIGINT applica-

tions. Neural network training approaches are varied, each being suited to a certain application. 

For exemplification I show the results for BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimiza-

tion in discriminating AM vs FM modulation and of stochastic optimization for the challenging 

case of AM-LSB vs. AM-USB (upper / lower sideband) discrimination. Although slower than 

BFGS, the stochastic training of a neural network avoids better local minima, obtaining a stable 

neurocore. 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

The 6th International Workshop on Deep Learning in Computational Physics (DLCP2022) 

6-8 July 2022 

JINR, Dubna, Russia 
 

 
*Speaker 

 
 

http://pos.sissa.it/
http://pos.sissa.it/
http://pos.sissa.it/


P
o
S
(
D
L
C
P
2
0
2
2
)
0
1
1

Stochastic vs. BFGS Training in Neural Discrimination of RF-Modulation                      Maria Dima et al. 

2 

1.  Introduction 

 

Signals Intell (SIGINT) is a branch of the military and civilian intell services monitoring 

(mainly) the RF communications. Automated Modulation Classifiers (AMC's) are of 2 types: 
likelihood classifiers (LC's) [2] and feature classifiers (FC's) [3]. LC's use a likelihood function 

on the received signal, while FC's neuromorphic software for feature extraction. LC methods 

have high CPU demand and need prior information from transmitters. FC's do not require this, 
however perform relatively well. They consist of (i) feature extraction - parameters constructed 

from amplitude, frequency, and phase distributions [4]. Features from advanced processing, 

such as Fourier (FFT) and wavelet transforms [5], or high-order statistical cumulants [6] require 
longer signal samples and are CPU intensive, for instance noise jammed signals can be analysed 

with the FFT of the cyclic autocorrelation function [7] and decrypted. Secondly, (ii) classifica-
tion - such as: linear, k-means [8], clustering algorithms, neural software [9] and support vector 

machine (SVM) with kernels [10]. Typical identification purities are 95% [11] (S/N of 0dB) for 

a variety of deep-learning methods, and 90% [12] (S/N of -10dB). Existing methods assume 
equal signal-to-noise (S/N) in the training and witness sets.  

 

2. Signal conditioning and feature creation 

        The reconstruction of signal we have presented before [1] and here we will just briefly re-

view it. We consider to have as fundamental wave: 

𝑢(𝑡) = 𝑝 + 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝛷) (1) 

where f, p, A are slowly varying functions of time.  
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

Figure 1. Spectrum of signal with noise (blue) compared to just signal without noise 

(black), around the intermediate frequency of 12 kHz. 

Pedestal reconstruction - for this the simplest method is to take an between ti and tf: 
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〈𝑢〉 = 𝑝 + 𝐴𝑒 𝑠𝑖𝑛 (2𝜋𝑓
𝑡𝑖 + 𝑡𝑓

2
+ 𝛷) 𝑠𝑖𝑛𝑐 (𝜋𝑓(𝑡𝑖 − 𝑡𝑓)) (2) 

where sinc(x) = sin(x) / x and Ae = Asinc( f ) - with   the duration of one sample. Since the sin 

term does not vanish, we try to zero the sinc term. For tf-ti = nΔ , the n ≅ m/fΔ, condition must 

be met, with m ∈ N. Basically m is scanned until the relation gives a close-enough integer (in 

our case n = 11) - and then 𝑝 = 〈𝑢〉 .  
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

Figure 2. Spectrum of signal with noise (blue) compared to just signal without noise 

(black), around the intermediate frequency of 12 kHz. 

Amplitude reconstruction - following the same idea, we designed a formula for the ampli-

tude:  

〈𝛿2𝑢〉 = 𝐴𝑒
2〈𝑠𝑖𝑛2〉 − 𝐴𝑒

2〈𝑠𝑖𝑛〉2 ≃
1

2
𝐴𝑒

2  (3) 

Through a coincidence the "magic number" n for double the frequency is very similar to 

the n = 11 from pedestal determination and we can use the same loop for the averages. 
 

        Frequency reconstruction - similar to amplitude, we determined frequency with an OII di-
polar moment, which basically differentiates the sine wave, where k indexes u(t-kΔ). We used 

k=1:  

 

Phase reconstruction - similar to frequency we determined phase with an OII dipolar mo-

ment taking reference to a fixed phase sine: 

〈𝑢(𝑢 − 𝑢𝑘𝛥)〉 = 𝑝𝐴𝑒(〈𝑠𝑖𝑛〉 − 〈𝑠𝑖𝑛𝑘𝛥〉) + 𝐴𝑒
2(〈𝑠𝑖𝑛2〉 − 〈𝑠𝑖𝑛 ∙ 𝑠𝑖𝑛𝑘𝛥〉) 

 

                                              ≃ 𝐴𝑒
2𝑠𝑖𝑛2(𝜋𝑓𝑘𝛥) 

(4) 
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〈𝑢 ∙ 𝑐𝑜𝑠〉 ≃
1

2
𝐴𝑒𝑠𝑖𝑛𝛷 (5) 

where for Φ = 0 the error may be significant, however phase is not absolute, rather relative to 

the previous sample's phase, as such such errors tend to systematically cancel out.   
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

Figure 3. Distribution of <2A> vs. time: in blue the signal with noise, compared to just signal 
without noise (in black). 

 
Feature creation - having pedestal, amplitude, frequency and phase for each sample, we 

accumulated these quantities in histograms looking for discriminating features. We devised sim-

ilar other parameters (in number of 12) to capture the differences between various modulation 
types. As an example, the figure above shows the distribution of the full width at ¼ maximum 

for the phase distribution histograms - with red, again, AM modulation and with blue, FM mod-

ulation. 
 

3. Elimination of perturbance due to noise 

The improvement over our previous work [1] was to consider noise in the data: 

 

𝑢(𝑡) = 𝑝 + 𝑛𝑜𝑖𝑠𝑒 + 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝛷) (6) 

 
A simplistic view would be to eliminate the noise, however this is a difficult, if not impossible 

task and we can concede, that noise is not that important, what we more specifically need is to 

discriminate between the different types of modulation in the presence of noise. For this we pro-
ceed with the same method used in the no-noise case. 
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Figure 4. Training evolution of network error versus iteration (epoch) number for Broyden-

Fletcher-Goldfarb-Shanno (BFGS) training, in the case of an AM vs. FM binary classifier. 

 
Pedestal reconstruction 

〈𝑢〉 = 𝑝 + 〈𝑛𝑜𝑖𝑠𝑒〉 + 𝐴𝑒 𝑠𝑖𝑛 (2𝜋𝑓
𝑡𝑖 + 𝑡𝑓

2
+ 𝛷) 𝑠𝑖𝑛𝑐 (𝜋𝑓(𝑡𝑖 − 𝑡𝑓)) (7) 

Amplitude reconstruction 

〈𝛿2𝑢〉 = 〈𝛿2𝑛𝑜𝑖𝑠𝑒〉 + 𝐴2〈𝛿2𝑠𝑖𝑛〉 + 2〈𝛿(𝑛𝑜𝑖𝑠𝑒)𝛿𝐴〉 (8) 

2〈𝛿2𝑢〉1 − 2〈𝛿2𝑢〉2 = 𝐴1
2 − 𝐴2

2 = 𝛿𝐴2 (9) 

    Although for the pedestal itself we have <noise> = 0, in practice the noise induces a sizeable 

fluctuation of the pedestal, depending on its amplitude. 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
Figure 5. Training evolution of network error versus iteration (epoch) number for stochastic 

training, in the case of an AM vs. FM binary classifier. 
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    However, the noise term vanishes when we consider the signal variation between two adja-

cent samples, mainly because the rms of the noise does not vary that rapidly, and by subtraction 
cancels out. 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Figure 6. Performance of the BFGS trained classifier, essentially perfect classification. 
 

    To study this we add noise to our signal – figure 1, and proceed with the data reconstruction 

as outlined in equations (7) and (9). The noise has the effect of broadening the <2A> distribu-
tion, figure 2 (blue with noise, black without). 

 
    However, the aim is not to eliminate noise, an impossible task, but to discriminate between 

RF-modulation types, in the presence of noise. 

 

    The better understanding of this aspect is seen from figure 3, where we followed the <2A> 

distribution in time. 

 
    It is obvious that in the passages of low volume, the noise will prevail and induce amplitude 

rms, <2A>, however, the low volume passages are not characteristic for any of the RF-
modulation types under consideration. 

 

    Rather, the higher modulation passages confer the characteristics needed to discern between 
RF-modulation types. 

 

    As such, it is an excellent result that with a noise “pedestal”  x10-15 times higher than our 

<2A> quantity, we can faithfully reproduce at least the higher-modulation passages in this 

quantity. 

 

    This analysis holds similar relevance for the differences in frequency rms <2f>1 - <
2f>2 and 

phase rms, <2𝛷>1 - <
2𝛷>2. 

 

4. Deep learning training and conclusion 

Using the same  set  of  12  parameters  previously  reported  in  [1],  we  trained  BFGS - 
Broyden-Fletcher-Goldfarb-Shanno training for AM vs. FM – figure 4, and stochastic training 

for AM-LSB vs. AM-USB – figure 5, deep learning neural networks for binary sets of modula-

tions. 
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Figure 7. Performance of the statistically trained classifier, with 95% classification purity 
of AM-LSB and AM-USB modulations (impossible to attain with the classical statistical-

moments method in the presence of noise). 

 
The results were again excellent, AM vs. FM confirming that noise plays a negligible role, 

and the very difficult case AM-LSB vs. AM-USB (essentially the same type of modulation) 
again marginally sensitive to noise (due to the slanted frequency spectra, LSB rising with fre-

quency, while USB sinking with frequency – slope determined by the high-modulation passag-

es, not the low-modulation ones affected by noise). It is our opinion that this result would be 
impossible to attain with the classical statistical-moments method in the presence of noise. 

 

We conclude that our noise reduction methods are performing very well and that our pre-
viously organization of the training programme [1] into BFGS for structurally different types of 

RF-modulation and statistical for very similar modulations (the AM family) is the correct pro-
cedure also in the case of signal containing noise. 
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