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Traditional linear approximation of quantum mechanical wave functions are not practically appli-
cable for systems with more than 3 degrees of freedom due to the “the curse of dimensionality”.
Indeed,the number of parameters required to describe a wave function in high-dimensional space
grows exponentially with the number of degrees of freedom. Inevitably, strong model assumptions
should be used when studying such systems numerically. There are, however, estimates of the
complexity of a function reproduced by a deep neural network (DNN) that demonstrate the same
exponential growth with respect to the number of the network layers. The number of parameters
for DNN grows only linearly with the number of layers. This gives us a hope that application of
DNN as an approximant for a wave function in high-dimensional space might moderate the com-
putational requirements for reproducing such systems and make 4- or higher-dimensional systems
feasible for direct numerical modeling. We present a study of DNN approximation properties
for a multi-dimensional quantum harmonic oscillator. We demonstrate that the computational
resources required to reproduce the wave function depend on the dimensionality of the problem
and the quantum numbers of the state. Increasing the number of hidden layers in a fully-connected
feed-forward DNN we can reproduce some excited states of a multidimensional system with com-
putational resources comparable to low-dimensional cases. Using the DNN as an approximant for
a wave function paves a way to developing a new class of computational schemes for solving the
Schroedinger equation for high-dimensional systems.
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1. Introduction

Numericalmodeling of complex quantummechanical systems is an important branch ofmodern
computational physics. Even though quite complex quantum systems – including many-electron
systems – can bemodeled on the base of the existing numerical algorithms, many important quantum
systems can only be treated withinmodel approaches that force some non-existent symmetry into the
solution or the interaction model. The typical complexity barrier which prevents us from applying
more realistic models arises from the curse of dimensionality. The quantum few-body problem
provides a natural illustration of the difficulties we meet. Consider a system of n quantum particles.
The dimension of the configuration space scales as dn, where d is the number of single particle
degrees of freedom. In practice, it means that we have to solve the partial differential equations of
the space with dimensionality more than 3 even for a two-body system, if the interaction between
the particle is non-central and the particles are captured in a non-symmetric field, such as an optical
trap or a semiconductor heterostructure. In practice, we often have to explore even more complex
configurations that lead to 6- or higher-dimensional problem. It is easy to see, that traditional linear
approximation approaches that can efficiently be applied to three-dimensional systems fail in higher
dimensions just because of the prohibitive size of the linear basis required to reproduce the solutions
accurately. It means that alternative approaches that do not rely on traditional linear techniques
might be very beneficial when solving quantum mechanical problems in high dimension.

In this work we explore fully connected feed-forward deep neural network as an approximant
for a multi-dimensional quantum mechanical problem. As a test ground we use the wave function
of a multi-dimensional harmonic oscillator which we approximate with deep and shallow networks
of varying depth and width.

2. Neural networks for Schroedinger equation

2.1 Early approach

The idea to use a neural network to represent an approximate solution of the Schrödinger
equation – and some other partial differential equations – was introduced and used by Lagaris
[1] more than 20 years ago. Recently, the idea of training a network to satisfy some differrential
equations started being presented under a specially coined term “physics-informed neural networks”
[2]. Here, in this section, we outline the original scheme proposed by Lagaris for solving the
Schrödinger equation and illustrate it with the case of a multidimensional harmonic oscillator.

Consider the Hamiltonian for a harmonic oscillator in d dimensions.

H = −∆x + ‖x‖2 (1)

Here x ∈ Rd is the position of the particle in the d-dimensional configuration space. We shall look
for the solutions of the Schrödinger equation

(H − E)Ψ(x) = 0 , (2)
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Ψ ∈ L2(Rd). The variables in this model system, obviously, separate, and the solutions read

Ψ(x) ≡ |n1 + 1, n2 + 1, . . . , nd + 1〉 =
1√

πd/22
∑d

k=1 nk
∏d

k=1 nk!
e−
|x |2

2

d∏
k=1

Hnk (xk ) . (3)

Here Hnk (xk ) stands for the Hermit polynomials, nk + 1 are the quantum numbers corresponding
to the index of the excitation in k-th coordinate. The energies of the corresponding states read
En = 2

∑d
k=1 nk − d.

In [1] it has been proposed to seek for a solution of the Schroedinger equation in the form of a
neural network with one hidden layer and an asymptotic normalizing factor

Ψ(x; u, v,w, β) = e−βx
2

m∑
j=1

vjσ(w j x + u j ) . (4)

Similar representations have been used also for two- and three-dimensional problems. The weights
and biases have been obtained by minimization of the following functional

L(u, v,w, β) =
∑

i[HΨ(xi; u, v,w, β) − εΨ(xi; u, v,w, β)]2∫
dx |Ψ(x; u, v,w, β) |2

(5)

where the energy has been evaluated as

ε =

∫
dxΨ∗(xi; u, v,w, β)HΨ(xi; u, v,w, β)∫

dx |Ψ(x; u, v,w, β) |2

For the excited states, it has been suggested to use the same functional, but the trial function had to
be explicitly orthogonalized with respect to the already calculated states.

This approach demonstrated its applicability to problems of small dimensions, but suffered
from a few drawbacks. First of all, the approach does not scale up well as the dimensionality
of the problem grows. The fixed set of collocation points had been chosen as the nodes of
qubature formulas used for calculations of the integrals. The optimization procedure relied on local
optimization algorithms which required very refined handwork to avoid non-optimal solutions to
the problem. Even though applicability of neural networks for solving the Schrödingr equation
has been demonstrated, practicality of the algorithm remained questionable. Indeed, the fixed set
of collocation points requires a lot of computational resources at each step of the optimization
algorithm. The single hidden layer – as we shall demonstrate in the subsecuent sections – is not
flexible enough to reproduce strongly oscillating solutions, especially in higher dimensions.

The techniques developed for engineering deep learning applications, however, can compensate
for the drawbacks of the earlier “demonstration of principle” approach.

2.2 Deep neural network approach advantages

Themain disadvantage of the early attempts to apply neural networks for solving the Schrödinger
equation [1] comes, probably, from the fixed set of collocation points employed in the calculation
process. The other limitation of the original approach comes from the application of a single hidden
layer networks as an approximant. Application of deep neural network (DNN) as an approximant
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Figure 1: Learning curves observed for the two-dimensional ground state for different network architectures
and varying batch sizes. The numbers nb in the figure legends indicate the batch sizes of 2nb .

promises serious advantages. Let us mention a few properties of DNN that can be helpful when
solving the Schroödinger equation in higher dimensions.

The complexity of a neural network approximant grows geometrically in the number of layers,
but the number of parameters scales only linearly[3]. This gives us a hope that quite sophisticated
functions can be approximated well even with a moderate number of the network parameters.

The number of required parameters grows linearly with the dimension of the problem [4]. This
observation suggests that calculations in higher dimensions will become feasible.

There is a belief that all the local minima of a deep network are equivalent [5], which lowers
the risks of hitting a local minimum.

The training procedure relies on themini-batch approachwhich allows us to draw the collocation
points from an infinite, and, moreover, continuous set of points. This minimizes the risks of not
representing some essential features of the solutionwhile keeping the computational costs moderate.

In the next section we shall describe our preliminary computational experiments with DNN as
an approximant for the wave function. We shall see, that DNN have advantages over the shallow
networks when approximating complex wave functions in higher dimension, which does promise
to lift the curse of dimensionality from the computations of high-dimensional quantum problems.

3. Numerical experiments

In this work we mostly concentrate on the approximative properties of a DNN. Instead of
solving the Schrödinger equation, we resort to a computationally simpler problem of approximating
its solutions (3) in different dimensions. We shall use the following notation. A multiindex
[n1, n2, ..., nd] corresponds to the quantumnumbers that define a d−dimensional state of the quantum
harmonic oscillator (3). The architecture of the neural network will be marked as D ×W , which

4



P
o
S
(
D
L
C
P
2
0
2
2
)
0
1
3

Deep learning approach to high dimensional problems of quantum mechanics V.A. Roudnev

Figure 2: Convergence of the neural network approximants of different architectures to the oscillator ground
state in different dimensions.

corresponds to D hidden layers of the width W each. In order to evaluate the convergence we
shall use two different functionals which we shall evaluate on a fixed test set of collocation points
x = {x1, x2, . . . , xN }. The first is the mean square deviation from the target function Ψ

MSE =
1
N

N∑
k=1

(N N (xk ;w) − Ψ(xk ))2 , (6)

where N N (xk ;w) stands for the neural network approximant. The second one is the energy estimate
of the state

Ee =

∑
k N N (xk ;w)(−∆ + |xk |2)N N (xk ;w)∑

k N N (xk ;w)2 . (7)

The energy estimate is important, as the convergence of the energy to the proper value indicates
not only the point-wise convergence of the solutions, but also the proper behavior of its second
derivatives. In all our runs we observe that well approximated states do correspond to its proper
energy with a reasonable accuracy.

In Figure 1 we show the learning curves observed for the ground states of the 2d oscillator
approximated by shallow (2 ×W ) and deep 6 ×W neural networks. The batch sizes about 211–213
look sufficient in order to obtain stable converged results, and we use the batch sizes of that order
in all the following numerical experiments.

First, let us take a look at the learning curves for the problems of similar complexity in different
dimension. In Figure 2 we show the learning curves for two shallow and two deep neural networks
with the task of approximation the oscillator ground state in dimensions from 1 to 7. In all the
examples we observe a trend of slowing the convergence with the dimensionality of the problem.
The shallow networks, however, practically fail to converge at dimension 4 or higher, whereas the

5



P
o
S
(
D
L
C
P
2
0
2
2
)
0
1
3

Deep learning approach to high dimensional problems of quantum mechanics V.A. Roudnev

Figure 3: Learning curves for shallow and deeper neural networks approximating the one-dimensional
oscillator states of different complexity.

wider and deeper networks keep improving even at 7-dimensional case, even though the convergence
rate seems to be rather slow.

Figure 4: Learning curves for neural networks of varying depth approximating the two-dimensional oscillator
states of different complexity.
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Figure 5: Learning curves for neural networks of varying depth approximating the oscillator states of
different complexity in varying dimensions. The higher-dimensional states with high excitations in one
single degree of freedom are the most difficult to approximate.

The complexity of the approximated state also affects the convergence rate for the DNN
approximants. We illustrate it in Figures 3, 4 and 5. For 1-dimensional problems all the network
architectures demonstrate rather good convergence (Figure 3). We can observe, however, that as
the number of the approximated state oscillations – the state complexity – grows, the convergence
slows down. This effect is much less pronounced for the networks with multiple hidden layers.

In Figures 4 and 5 we fix the complexity of the state by fixing the product of the quantum
numbers of the state being approximated. The oscillations are distributed differently between
different degrees of freedom. Again, we see that deeper networks demonstrate better convergence.
The worst case scenario, however, corresponds to the states that strongly oscillate in one dimension,
while behaving smoothly in all others.

We observed that deeper networks demonstrate better convergence, especially in the case of
approximating the more complex functions in higher dimensions. The question remains, whether
increasing the width of the network, i.e. the number of neurons in a hidden layer, can help us to
solve higher-dimensional problems. In Figures 6 and 7 we applied the two alternative strategies
of growing the network to approximate the states [1, 1, 1, 1] and [4, 4, 1, 1] of a four-dimensional
harmonic oscillator. We should emphasize that these states are beyond the reach of the traditional
linear mesh-based approximation methods. Figure 6 demonstrates that the single hidden layer
network does not demonstrate any convergence for the excited four-dimensional state, whereas for
the ground state the convergence is very slow even for the hidden layer as wide as 1024 neurons.
The two hidden layer networks converge somewhat better, but the excited state remains very poorly
reproduced. The computational cost scales quadratically with the layer width, and the computational
cost rapidly becomes prohibitive.
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Figure 6: Learning curves for shallow networks of growing width approximating four-dimensional states
[1, 1, 1, 1] and [4, 4, 1, 1]

Figure 7: Learning curves for networks of growing depth approximating four-dimensional states [1, 1, 1, 1]
and [4, 4, 1, 1]

The strategy of growing the number of layers demonstrates rather different results (Figure 7).
The networks of more than 4 hidden layers do demonstrate convergence, even though it seems to
be rather slow in the case of the excited state.

Finally, in Figure 8 we show the learning curves for the [16, 1, 1, 1] state. There we show not
only the mean square error, but also the energy estimate of the state. As we have mentioned, the
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convergence of the energy estimate to the correct value ensures that the state is being approximated
correctly with – at least – its second derivatives.

Figure 8: Learning curves for the energy of the [16, 1, 1, 1] state approximated by 6 × 48 neural network.
Upper panel shows the energy estimate (7), the lower panel demonstrates the mean square error.

4. Conclusions

We have reported a series of numerical experiments that we have performed to check, whether
a fully-connected multiple hidden layer neural network can be used as an approximant for a quantum
mechanical state in high dimensions that remain beyond reach of more traditional computational
methods. We can characterize our results as promising. Using rather moderate computational
resources – each run usually takes no longer than 30 minutes on a single GPU – we have managed
to reproduce four-dimensional states with reasonable accuracy. We have observed that increasing
the depth of the network rather than its width does allow us to work with quantum systems with
more than four degrees of freedom. We consider this as a first step towards developing a new
computational technology that would make direct modeling of very complex quantum systems
possible.

Many unsolved problems remain, however. In this work we only studied the approximation
properties of the networks, but the problem of solving the Schrödinger equation directly will also
require new studies of the most appropriate objective functions. In order to improve the convergence
we should study optimal policy of drawing the collocation points from the corresponding domain in
configuration space. We have also studied the problem with very simple boundary conditions that
correspond to a bound state of the quantum system. The ways to implement appropriate boundary
conditions for scattering states will also require extensive research.
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