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The information on the past climates or environments is preserved in natural archives, such as, for
example, marine sediments covering the sea-floor. The study of sediment composition in coarse
fraction (>0.063 mm) is widely used, yet time-consuming technique useful for recognizing an-
cient environments. The coarse fraction analysis is generally performed visually under binocular
microscope and requires the high qualification of the observer. In this study, we propose a method
to automate and accelerate this kind of work using a combination of classic computer vision
and machine learning algorithms. Using an optical digital microscope with precise automatic
positioning system, we photographed sieved and dried sediment samples composed of particles
over 0.1 mm in size. We then applied a clustering pipeline including classical and neural machine
learning techniques. We demonstrate that the proposed method is capable of dividing visual
representations of marine sediment grains into homogeneous groups suitable for further accurate
classification by an experienced specialist. Our method may significantly reduce the time costs
of an expert conducting a study of marine sediments. This will allow further evaluation of sedi-
ment composition, main sediment sources and some important characteristics (proxies/indicators)
marking a particular environmental setting in the past. The clustering results obtained using our
algorithm may be used to train a more accurate classification algorithm.
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1. Introduction

The ocean floor is mantled with a thick sediment cover. Scientists use the material accumu-
lated on the sea-floor during thousands and millions of years as a timeline to study the changes of
oceanographic and climatic conditions in the past. Similar records preserved in the sedimentary
rock layers on continents are much more incomplete due to severe activity of the wind, water,
high-amplitude temperature variations etc. Researchers have a variety of methods for deciphering
sedimentary records and reconstruction of the geological past. The study of sediment composition
in coarse fraction (particles over 0.063 mm in size) is a quite old but still widely used technique for
recognizing ancient environments (e.g., Lankford and Shepard, 1960; [14] Brookfield, 1978 [3]).
This approach provides among others information on mineral composition, sediment sources and
deep ocean chemistry and circulation (i.e. variations of foraminiferal lysocline and calcite com-
pensation depth). Researchers use specific indicators (proxies) marking a particular environmental
setting in the past (Gornitz, V., 2009 [5]): specific mineral associations, the ratio between biogenic
and terrigenous paticles, the ratio between tests of planktic foraminifera (single-celled organisms)
and their fragments etc.

Before the analysis, sediment samples collected from the sea-floor using various sampling
devices (gravity corers, grabs, box- and multi-corers) should be sieved (mesh size 0.063mm or
0.1 mm) and dried. Then the specialist manually observes and classifies particles under binocular
microscope and usually cannot consider all the particles in the sample. A small quartered subsample
of grains is examined (usually not less than 300 grains). It is obvious though that as the particle
amount decreases, the representativeness decreases correspondingly. This work is highly-time
consuming and negatively affects the health of a specialist due to high visual load (work with an
optical microscope is acknowledged as harmful working conditions). Finally, the work requires a
highly qualified specialist, which is always lacking, and it takes a huge amount of time to train new
experts.

For all the above reasons, the aim of this paper is to simplify the work of scientists by creating
an automatic classification algorithm. Unfortunately, we were unable to solve a supervised machine
learning classification problem due to lack of a labeled training dataset. Instead, in this work, we
tackle the problem using clustering approach, as it does not require labels. Later, having unnamed
clusters containing objects of the same types, an experienced specialist may label them, thus,
creating labeled dataset of particales of marine bottom sediments. This dataset may later become
the basis for creating a fully automated classification machine learning algorithm.

In this study, we propose the algorithm for processing digital microphotographs of particles
of marine sediments, which makes it possible to automate the partition of these particles into
semantically homogeneous groups for further study by an expert. Our approach consists of the
following steps:

1. we collected the microphotographs of marine sediment particles (> 0.1 mm in size) using
contrastive background with 80x automated microscope;

2. we processed the microphotographs of marine sediment particles in order to isolate visual
representations of individual grains;
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3. we developed and implemented an algorithm based on deep learning techniques for reducing
the dimensionality of a feature description of particles with the selection of semantically
significant features;

4. we trained the encoder-decoder-type neural network we developed using the dataset of visual
representations of individual particles;

5. we applied the encoder of the trained neural network to visual representations of individual
particles resulting in hidden representation of these objects;

6. we applied K-means clustering algorithm to the dataset of hidden features of visual represen-
tations of marine sediment particles.

1.1 Related works

The main problem we tackle in this study from methodological point of view, is the clustering
of visual representations of objects of similar origin. The main issue of processing the visual objects
using classic machine learning methods such as K-means clustering is the so-called "dimensionality
curse" [2] which is still in action when one tackle the images of marine sedimentary particles due to
their size (280x280 px. on average, RGB channels, 6 images per object — see "Data and methods"
section). Also, the size of the images of individual objects may differ due to sampling method.
In order to tackle these issues, in state-of-the-art methods of machine learning and deep learning,
several approaches were developed for the clustering of visual objects. One of the most popular
methods is the two-step approach which includes dimensionality reduction with the consequent
application of clustering algorithm. The first step allows one to reduce the dimensionality of a
feature space of a homogeneous (meaning the sampling nature of the examples) sample taking into
account its statistical patterns.

One of the most studied dimensionality reduction methods is principal components analysis
(PCA) [15]. In case of simple clustering problems with linearly separable data, PCA may provide
meaningful feature space with high quality of corresponding clustering results. However, PCA does
not deliver semantically meaningful features. Also, the images of marine sedimentary particles
may occur having different spatial sizes which prevents one from exploiting PCA.

Among deep learning approaches for the dimensionality reduction, there are also several
methods proposed recently for solving the task of feature learning such as autoencoders [10] or
contrastive learning models [6], e.g. MoCo [8]. In this study, we chose to use autoencoders as the
ones with most straight-forward training procedure. Autoencoders are also known for the tractable
modifications one may apply to restrict the distributions of hidden features, e.g. Sparse Autoencoder
[17], Variational Autoencoder (VAE) [13], 𝛽-VAE [9], etc.

The main contributions of our study are the following:

• we propose the pipeline for extracting the imagery of marine sedimentary particles represent-
ing them in several focal distances, using SLIC [1] spatial superpixel-based segmentation;

• we propose the architecture of a variational autoencoder with ResNet-like [7] encoder which
we train in order to perform the dimensionality reduction with the constraints imposed on the
hidden feature space;
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• we propose the pipeline including the previous two methods for clustering the particles
resulting in semantically homogeneous groups which may be further either annotated by
an experienced marine paleooceanologist or subjected to the similar processing in order to
subdivide them.

2. Data and methods

The studied sediment samples were obtained in research cruises organized by the Shirshov
Institute of Oceanology (e.g. [11]). Sediment samples collectected using gravity corers and grabs,
were sieved (mesh size 0.1 mm), dried and disassembled. The resulting sediment particles look
like sand, but contain valuable information in the form of the distribution of types and sizes of
grains. We placed the studied particles on a bright contrasting green plate of a Levenhuk DTX 90
microscope and evenly distributed them. The microscope (see fig. 1) is able to take pictures on any
part of the plate under 80x magnification with varying focal distances ("focal layers" hereafter). The
resulting images are of 1280x1024 px resolution. To take the most volumetric information from the
images, we took the photographs in each position of the plate six times varying the focal distance.
The camera moves along the substrate and takes pictures automatically. The only action required
of the researcher operating the microscope is to change the contents of the substrate as the shooting
progresses. This way, a dataset of 58302 photographs with certain amount of marine sedimentary
particles is obtained.

In order to cluster the grains, it is necessary to select individual particles in each photograph.
For this reason, we applied the traditional machine learning algorithm SLIC (Simple Linear Iterative
Clustering) [1]. In this method, a special distance metric is proposed that considers color and image
plane space distances. Using SLIC, we divided each image into many homogeneous segments
called superpixels, with sufficient accuracy and low computational costs. Some superpixels frame
the background, while others frame particles visual representation. At the same time, some particles
may be covered by several superpixels. Thus, the problem of extracting the imagery of individual
particles is decomposed into two tasks: to separate particle-related superpixels from the background
ones, and to enclose the adjoint particle superpixels by a rectangle which is then used to cut the
image of a particle from the photograph.

A significant feature of the bright green pixels of the backgroud is their high saturation value
in HSV color space. This fact allows one to separate the segments with studied particles of marine
sediment from the background segments that are not of research interest. We did it by dropping
the segments with the highest pixel average saturation (see fig. 1). We then united the contacting
particle-related superpixels, and also eclosed the resulting segments by rectangles using minimum-
eclosing bounding box fitting. In order to be able to synchronize the bounding boxes in several focal
layers, we used non-rotated eclosing bounding boxes fitting. Since there are six photographs in each
position at the plate with varying focal distances, the segmentation described here was performed
six times. The resulting bounding boxes for each particle differ slightly between the images taken
with different focal distances. We consider the widest bounding box of the six as the one enclosing
the particle image. Using these bounding boxes, we cut out the individual particles from all the
six focal layers. Thus, the features of objects (marine sediment particles) are the six layers of RGB
images with varying spatial sizes.
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Figure 1: The pipeline of image processing resulting in bounding boxes enclosing individual particles: (1)
we capture the microphotographs of a region of the substrate distributed at the green plate using Levenhuk
DTX 90 automated microscope; (2) we apply SLIC method resulting in segments of individual particles;
(3) we apply bounding boxes fitting crop the particles from the image. In the histogram, we demonstrate
the distribution of the saturation values in the image; the red line indicates the threshold which we used for
distinguishing between background and particle-related superpixels delivered by SLIC at step (2).

After processing all 58′302 RGB photographs that are 9′717 sets of six focal layers, 28′801
particles were identified. We then measured the average grain sizes in pixels. This is the lengths
of bounding boxes along both spatial axes. The average transverse length in our dataset is close to
280 px. For the correct operation of the neural network algorithm, we applied resize transformation
to the images of individual particles to make them equally sized. In order to minimize the particle
distortion in average, we considered 280x280 px. size as the target during the resize operation.
Because of this, some semantic features related to the sizes and proportions of the grains may be
irrelevant. However, this resize transformation simplifies further processing significantly.

As a result of the abovementioned procedure involving SLIC algorithm along with the subse-
quent transformations, we collected a dataset consisting of a series of six RGB images 280x280 px.
in size. These images sets are equivalent to vectors in a 1411200-dimensional real-valued feature
space. Under the conditions of such a high-dimensional space, clustering algorithms expected
to produce the results of poor quality due to the so-called "curse of dimensionality" effect [2].
This effect manifests itself in the exponentially increasing in volume associated with adding extra
dimensions to Euclidean space. This effect results in weak coordinate dependency of Euclidean
distance measure between a test vector and all other sample vectors. Consequently, this often results
in statistical indistinguishability of groups of examples for the algorithms that rely on Euclidean
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metric similarity measures and similar ones. There are several ways to deal with the curse of
dimensionality in clustering problems. One of them is to modify the similarity measure. For
example, one may use higher-order Minkowski metrics. However, the choice of the right order of
this metric in clustering problems is a difficult task, since clustering itself is an ill-posed problem.
Therefore, it is difficult to determine the clustering quality measure in advance. The second way
to combat the effects of the curse of dimensionality is to nonlinearly reduce the dimensionality
of examples. As we pointed out in Section 1.1, there are both linear methods for dimensionality
reduction (e.g., PCA [15] or linear neural autoencoder [23]) and nonlinear ones, including Stacked
Autoencoders [10] or contrastive learning models [6], e.g. MoCo [8]. Nonlinear methods is the
preferred approach, as they allow one to extract semantically meaningful features. In the original
high-dimensional space, semantic features are not expressed explicitly. At the same time, clustering
should be carried out guided by high-level features such as color, shape, presence of protrusions,
their number and location. These visual features are not expressed at the pixel level in the visual
representation of the grains. Therefore, the task is to compress the high-dimensional vector of an
object into a low-dimensional one, which is suitable for clustering while preserving and, if possible,
highlighting important semantic features.

In our study, we decided to apply variational autoencoder (VAE) [13] at the feature learning
step as it is one of the recommended and most commonly used dimensionality reduction methods in
clustering problems. VAE also delivers satisfactory results when one applies it to imagery datasets
characterized by simple visual content [22]. The content of our images may be considered simple
since they have nothing but a solid background and a clustered particle.

In autoencoders, the process of computing the low-dimensional feature vector of an object with
the extraction of new features is called encoding; and the process of reconstructing the original
examples from the low-dimensional feature vector is called decoding. Auto-encoding is potentially
lossy transformation, and the rate of quality loss is strongly dependent on the expressive power
of encoder and decoder, input data distribution in original feature space, the width of the hidden
representation (i.e., dimensionality of the low-dimensional feature space). In order to compose the
most lossless autoencoder, we conducted hyperparameters optimization regarding the architecture
of the autoencoder using pixel-wise mean squared error (MSE) metric 1 as a quality measure.

𝑀𝑆𝐸 =

∑6
𝑙=1

∑𝑊
𝑖=1

∑𝐻
𝑗=1

∑𝐶
𝑐=1

(
𝑥𝑖 𝑗𝑐𝑙 − D (E (𝑥))𝑖 𝑗𝑐𝑙

)2

6 ∗𝑊 ∗ 𝐻 ∗ 𝐶 , (1)

where 𝑥 is the feature vector of an object (i.e., the six RGB images of a particle of marine sediment);
indices 𝑖, 𝑗 enumerate spatial coordiinates of these images; index 𝑐 enumerates color channels
(either Red, Green or Blue); index 𝑙 enumerates the focal layer. Here𝑊, 𝐻 are the width and height
of the images of individual particles; 𝐶 is the number of color channels, which is three for RGB
images; D, E are the decoder and the encoder, thus, D (E (𝑥)) is the reconstructed example.

There is an issue of the regular autoencoder (i.e. Stacked Autoencoder [10]) so that it does
not have any mechanism to govern the organization of the data in the hidden representation feature
space. The only thing a Stacked Autoencoder (SAE) learns is to map the input data vectors into
reconstructed feature space as accurately as possible in terms of pixel-wise MSE loss function,
regardless of how the data in the hidden representation is adjusted. This can also lead to overfitting,
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that is, the algorithm will learn perfectly on training images, but the quality of the reconstruction
may drop noticeably when processing new out-of-train examples. To alleviate these effects, one
may impose some restrictions of either architectural matter or training procedure matter. Thus, it
is possible to define a variational autoencoder (VAE, [13]) as an encoder whose learning process
is ordered to avoid overfitting and ensure that the hidden representation demonstrates suitable
properties, e.g., for clustering.

The architecture of VAE (fig. 2) is similar to the SAE: VAE is characterized by the two neural
networks, encoder and decoder. The task of a VAE is to reconstruct the imput examples with
minimal pixel-wise MSE error. In contrast with SAE, the encoder maps an input example to the
distribution of its hidden representation which is encouraged to be normal using regularization term
of the loss function (see eqs. (2),(3)). The decoder reconstructs the example using s low-dimensional
vector in hidden representation feature space drawn from the normal distridution characterized by
the parameters approximated by the encoder. From the application point of view, the regularization
term, namely KL-divergence (3) between the returned distribution and the standard Gaussian, is the
term one uses to regulate the properties of the hidden representation feature space. The resulting
loss function of VAE is the following:

𝐿𝑂𝑆𝑆 = 𝑀𝑆𝐸 (𝑥, 𝑑 (𝑒(𝑥))) + 𝐾𝐿 (𝑁 (𝜇𝑥 , 𝜎𝑥), 𝑁 (0, 1)), (2)

where 𝑀𝑆𝐸 is the (1) equasion, and the KL divergence between the distribution P to the distribution
Q in general is the following:

KL(𝑃∥𝑄) =
∫

𝑃 (𝑥) log
𝑑𝑃

𝑑𝑄
𝑑𝑥, (3)

where the integral is taken over the entire 𝑋 space of outcomes that P and Q need to have in common.
Hidden representation feature space generated by a VAE is characterized by two properties:

completeness and continuity. The latter one means that two vectors that are close in hidden repre-
sentation feature space will result in semantically similar reconstructed examples being transformed
by the decoder. In our study, this property is essential since it allows one to perform the clustering
due to placement of semantically similar examples close to each other in compact regions of low-
dimensional feature space. The task for the clustering algorithm is to patrition these areas the right
way.

2.1 VAE implementation details

Convolutional neural networks are used as an encoder and decoder of the VAE we employed
in our study for dimensionality reduction task. For the encoder, ResNet-152 [7] backbone is used
which is pre-trained with Imagenet dataset [26]. As we have six images in each set to extract features,
the encoder contains six ResNet-152 branches which outputs are contatenated. The dimension of
the hidden representation feature space in our study is 512.

The adaptive momentum estimation optimizer (Adam [12]) with weight normalization and
initial learning rate of 10−4 is used to minimize the loss function.

Using the trained encoder, we extracted low-dimensional features from the images visually
representing the individual marine sediment particles. Encoder maps the examples into the mean
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Figure 2: Archictecture of variational autoencoder used in our study for dimensionality reduction. Here, 𝑥
is visual representation (six focal layers of RGB images) of an input example; 𝜇𝑥 and 𝜎𝑥 are the parameters
computed by the Encoder; 𝑧 is the random vector in hidden representation feature space drawn from the
normal distributiion parameterized by 𝜇𝑥 and 𝜎𝑥 ; 𝑥 is the reconstructed example.

(𝜇𝑥 in fig. 2) and variance (𝜎2
𝑥 in fig. 2) parameters of the normal distribution. Following the best

practices [27], we employ the 𝜇𝑥 parameter as the hidden representation of the examples.

2.2 Clustering approach

Using the hidden representation of the examples, we applied K-means clustering [16] algorithm.
K-means is relatively simple, and yet it is a widely used choice delivering suitable results in case
of vectors distributed convexly and isotropically. K-means hypeparameter is 𝐾 number of clusters
into which the sample is divided.

In our study, we intentionally applied VAE as the dimensionality reduction method that is
characterized by the desired property of hidden representation feature space, i.e., its continuity. At
the same time, VAE is characterized by the downside which is normal distribution of the feature
vectors of the dataset mapped to this space. Thus, the clear structure of the dataset is lost in this
space, so as the capability of clear identification of the clusters. To overcome this issue, we chose to
use the so-called overclustering approach, i.e., we divided the dataset into large (𝐾 = 100) number
of clusters. This method is also applied for data clustering with fuzzy labels [24], which is what
our data essentially is. The number of clusters 𝐾 = 100 is chosen following the expert suggestion
of expected particle groups (10), with the intention to partition the hidden representation feature
space into finely defined clusters containing semantically homogeneous sets of examples.

2.3 Implemetation details

In our study, we exploited Python v.3.7 programming language [28]. For implementing
our clustering approach, we used scikit-learn package [21]. For implementing the dimensionality
reduction with the VAE model, we used Pytorch library [29]. For implementing the classic computer
vision operations, we exploited OpenCV library [30]. The computations were performed on
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NVIDIA DGX Station equipped with 256GB RAM using NVIDIA Tesla V100 graphics processing
unit with 32GB video memory.

3. Results

We applied the proposed method for the clustering of marine sediment particles in a form of
their visual representations taken at six fical distances as described in Section 2 "Data and Methods"
to the dataset we collected and processed as described in the same section. The procedure results
in clusters labels from 0 to 99 for each one of the particles. In fig. 3, we present the examples
of four different clusters in order to demonstrate their inter-cluster semantic differences and also
intra-cluster semantic homogeneity.

An experienced paleooceanologist then examined the groups of images fallen into different
clusters. According to the examination results, our method is capable of partitioning the dataset
into semantically meaningful clusters. Some groups of images are almost entirely composed of
particles of terrigenous origin (i.e. derived from the continent). Furthermore, they can also be
clearly divided into transparent grains, most likely quartz, and dark-colored ones that is subject to
further study (probably, hornblende). Other clusters mostly consist of biogenic particles (product
made by or of life forms). These are mainly represented by foraminiferal tests, which, in turn, are
clearly divided into two groups: broken tests and intact ones.

In addition, few clusters were assessed as containing "chopped" particles. These are the grains
which occured on the edge of the field of view during the photography, thus, they did not fit
completely into the image. Such particles were recognized by our algorithm as being semantically
different significantly from the rest ones. Therefore, they can be clearly separated from the rest
so that they do not interfere with the calculation of paleoindicators. The same situation occurred
with particles that are too close to each other on the substrate and, because of this, counted by our
algorithm as a single object. Such examples were grouped into separate clusters, presumably, due
to their placement at some distance from the others in the hidden representation feature space, thus,
forming their own clusters.

In figure 4, we present the visualization of the distribution of dataset particles in the hidden
space projected into two-dimensional plane. The projection is made using UMAP method (Uniform
Manifold Approximation and Projection for Dimension Reduction, [18]) for the visualization pur-
pose only. UMAP is characterized by the property of the mapping preserving the spatial relations
between the data points. Thus, one may use UMAP to visualize the relations between objects and
groups of a dataset. In figure 4, one may see two large groups of objects in the center of the diagram.
The group in the lower right region of the central conglomeration contains mostly the clusters with
quartz grains. The other one includes foraminiferal tests. In the far right region, one may see a small
collection of clusters including dark-colored particles. Particles that are not completely captured in
the frame ("chopped" ones), as well as the objects consisting of several particles stuck together, are
located at the edges of the diagram. This means their distant placement in the hidden representation
feature space generated by the projection of the encoder. This means that such clusters will be easy
to identify and exclude from consideration.

Taking into account the examination of the expert, and also the visual similarity of the images
of particles in separate clusters (see fig. 3), one may consider the proposed approch for clustering
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the marine sediment particles successful.

Figure 3: Here, we present the examples of particles from the most successfully clustered groups. Inorganic
particles are quartz grains and undefined dark-colored grains. Particles of biogenic origin are foraminiferal
test and their fragments

3.1 Discussion

There are several issues we faced in this work. First, there is an issue of "chopped" particles
along with the particles that were placed too close to each other at the photography stage. These
issues result in reduced quality of the segmentation of individual grains. In case of the latter issue,
multiple particles are represented in the dataset as one, thus, they should not be considered at the
stage of estimating the paleoindicators. This issue may introduce bias or increasing uncertainty
into the estimated values. In further study, we plan to distribute the particles with lower spatial
density at the plate in order to decrease the number of adjacent grains. This manner of grains spatial
ditribution will also decrease the number of particles occured close to margins of the microscope
field of view, thus, decrease the number of "chopped" grains.

Within the two-step clustering paradigm, both stages may be optimized. First, one needs to
note that VAE lacks object-level semantics due to its pixel-wise reconstruction loss that tends to
over-emphasize low-level semantics. For example, MoCo [8] representation learning algorithm
may deliver better quality as it implements data augmentation which may significantly improve
the performance in our study. Next, one may also notice that in our method, the traditional K-
means algorithm is used, which have to be recalculated every time new examples are obtained.
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Figure 4: UMAP [18] visualization of sediment sample images in hidden representation feature space
generated by the VAE employed in our study.

In our method, there is no obvious way to apply a trained K-means model. Moreover, although
overclustering helps to highlight homogeneous clusters. Lots of ’marginal’ clusters contain a
sufficient number of particles of a various kind. SPICE [19] algorithm proposes method to re-train
neural clustering sub-network using most confident samples.

4. Conclusions and outlook

In this work, we presented an innovative approach for processing digital photographs of
marine sediment particles, which makes it possible to automate the division of these particles
into semantically homogeneous groups. For this, an algorithm for processing microphotographs
was developed based on the approaches of classical computer vision, which makes it possible
to isolate individual grains. Using this algorithm, we compiled the database of feature vectors
of all sediment particles of the studied sample, based on digital photography data taken with
several focus distances by a 80x automated microscope. We also developed and implemented the
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algorithm based on artificial neural networks, namely convolutional variational autoencoder, to
reduce the dimensionality of the feature space of grains. We optimized the neural network based
on the compiled database of microphotographs of individual particles. Using the coding part of
the optimized neural network, we calculated semantically meaningful features for each particle of
the sample. Using these hidden representations of the reduced dimensionality, we clustered the
particles of the sediment of the studied sample into 100 clusters.

The results of clustering show that the proposed approach makes it possible to divide the
sediment particles of the studied sample into semantically homogeneous groups. Some of them
obviously represent particles of terrigenous origin; other clusters contain particles of biogenic
origin, whole foraminiferal tests; still others contain fragments of such tests. However, some of the
clusters contains particles of different types. This issue may be addressed with further application of
the proposed clustering approach to the subsample containing the examples of these mixed clusters.

Despite the large number of groups, one may note the importance of the result: the exammina-
tion and classification of these groups by an experienced expert allows one to quickly classify all the
grains of the sample with significantly less time spent compared to conventional research methods
that result in the same classification. The classification obtained this way makes it possible to au-
tomatically calculate important characteristics (proxies, paleoindicators), such as the ratio between
calcareous particles and siliclastic (terrigenous) grains, as well as the ratio between the number of
foraminiferal test and their fragments.

The results of our study suggest the promising potential of further development of the proposed
approach for semantic grouping of marine sediment particles. Based on visual representation of
the particles, one may estimate their linear dimensions and shape parameters, which will make it
possible to assess the distribution of these characteristics for each individual group.

As a part of the task of facilitating the work of marine geologists, sedimentologists and
paleoceanographers, it is also important to be able to develop to a fully automated classification
algorithm based on the labeling of a clustered sample made by a specialist. We are going to deploy
the algorithms of our study as a website or mobile app.
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