PoS - Proceedings of Science
Volume 429 - The 6th International Workshop on Deep Learning in Computational Physics (DLCP2022) - Track3. Machine Learning in Natural Sciences
Data-driven approximation of downward solar radiation flux based on all-sky optical imagery using machine learning models trained on DASIO dataset
V.S. Koshkina, M. Krinitskiy*, N. Anikin, M. Borisov and S. Gulev
Full text: pdf
Pre-published on: November 15, 2022
Published on: December 06, 2022
Cloud cover is the main physical factor limiting the downward shortwave (SW) solar radiation flux. In modern models of climate and weather forecasts, physical models describing radiative transfer through clouds may be used. However this option computationally expensive. Instead, one may use parameterizations which are simplified schemes for approximating environmental variables. The purpose of our study is to assess the capabilities of machine learning models of approximating radiation flux based on all-sky optical imagery in order to assess the links between observed cloud cover properties with the flux. We applied various machine learning (ML) models: classic ML models and convolutional neural networks (CNN). These models were trained using the dataset of all-sky optical imagery accompanied by SW radiation flux measurements. The Dataset of All-Sky Imagery over the Ocean (DASIO) is collected in Indian, Atlantic and Arctic oceans during several expeditions from 2014 till 2021. When training our CNN, we applied heavy source data augmentation in order to force the CNN to become invariant to brightness variations and, thus, approximating the relationship between the visual structure of clouds and SW flux. We demonstrate that the CNN supersedes existing parameterizations known from literature in terms of RMSE. Our results allow us to assume that one may acquire downward shortwave radiation flux directly from all-sky imagery. We also demonstrate that CCNs are capable of estimating downward SW radiation flux based on clouds' visible structure.
DOI: https://doi.org/10.22323/1.429.0022
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.