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The recent introduction of machine learning techniques, especially normalizing flows, for the
sampling of lattice gauge theories has shed some hope on improving the sampling efficiency of
the traditional HMC algorithm. Naive use of normalizing flows has been shown to lead to bad
scaling with the volume. In this talk we propose using local normalizing flows at a scale given
by the correlation length. Even if naively these transformations have a small acceptance, when
combined with the HMC algorithm lead to algorithms with high acceptance, and also with reduced
autocorrelation times compared with HMC. Several scaling tests are performed in the q4 theory
in 2D.
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Figure 1: Extracted from [1]: normalizing flow sketch. A set of configurations I8 is generated from a
trivial probability distribution A (I); a neural network model 5 is used to generate a new set of configurations
via q = 5 −1 (I), which follow ?̃ 5 (q) ≈ ?(q), with ?̃ 5 the model’s output distribution and ? the target
distribution.

1. Introduction

1.1 Normalizing flows

Normalizing flows are amachine learning sampling technique introduced to lattice field theories
in [1]. As sketched in Fig.1, they propose a flow-basedMarkov ChainMonte Carlo algorithmwhose
workflow is

1. Generate a set of configurations I8 following a trivial probability distribution A (I).

2. Apply a function 5 −1 to all configurations I8 , obtaining a new set of configurations q8 via
q = 5 −1(I), following a new probability distribution ?̃ 5 (q). 5 is a neural network which has
been trained so that the new probability distribution ?̃ 5 is a similar as possible to our target
distribution ? ∝ 4−( , the distribution of the theory to be studied.

3. Use a Metropolis–Hastings accept-reject to correct for the bias in the approximation ?̃ 5 ≈ ?.

The training of the neural network 5 is done by minimizing the Kullbach-Leibler (KL) divergence,

�KL( ?̃ 5 | |?) =
∫
Dq ?̃ 5 (q) log

?̃ 5 (q)
?(q) , (1)

which is a statistical distance satisfying �KL( ?̃ 5 | |?) ≥ 0 and �KL( ?̃ 5 | |?) = 0 ⇐⇒ ?̃ 5 = ?.
Therefore, after training the network 5 is expected to be an approximate trivializing map [2].

As shown in Fig.2 (left), the good thing about this algorithm is that autocorrelation times in
the resulting Markov chain do not scale when taking the continuum limit if the neural networks
are trained up to the same reference acceptance, meaning that the cost of producing configurations
does not scale; on the other hand, autocorrelations with the Hybrid Monte Carlo (HMC) algorithm
are expected to scale as ∼ b2.

However, if one wants to study the scaling of the total computational cost, one needs to analyze
the training costs as well, since

total cost = configuration production cost + network training cost. (2)
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Figure 2: (Left) Extracted from [1]: autocorrelation time scaling for different observables using normalizing
flows with networks trained to have Metropolis acceptances of 50% and 70%. (Right) Extracted from [3]:
scaling of the number of configurations needed to train a network up to an acceptance of 70%.

It was shown in [3] that the cost of keeping a reference Metropolis acceptance of 70% seems to
scale approximately as ∼ b8 (see Fig.2), indicating a transfer of the critical slowing down problem
from the production of configurations to the training cost of the networks.

In what followswewant to address whether one can still benefit from normalizing flows keeping
the training costs low.

2. Learning Trivializing Flows

2.1 The algorithm

The main idea is to use Lüscher’s trivializing flows [2], so that we can use the normalizing
flows to help the HMC algorithm, rather than replacing it. For example, let’s consider the partition
function of our target theory,

/ =

∫
Dq 4−( [q] . (3)

We can make a change of variables q→ q̃ using our trained network 5 ,

q̃ = 5 (q), q = 5 −1(q̃), Dq =
����m 5 −1(q̃)

mq̃

����D q̃ ≡ det �
[
5 −1(q̃)

]
D q̃, (4)

so that the partition function becomes

/ =

∫
D q̃ 4−( [ 5 −1 ( q̃) ]+log det � [ 5 −1 ( q̃) ] ≡

∫
D q̃ 4−(̃ [ q̃] , (5)

where we have defined the new action

(̃[q̃] ≡ ([ 5 −1(q̃)] − log det � [ 5 −1(q̃)] . (6)
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This new action is a combination of the old action ([q] and the logarithm of the Jacobian of the
variable transformation of Eq.(4). If the Jacobian cancels out part of the action, then the probability
distribution 4−(̃ [ q̃] might be easier to sample from than 4−( [q] , and using HMCwith the new action
might yield lower autocorrelation times. The workflow of the algorithm would then be

1. Train the network 5 by minimizing the KL divergence.

2. Run the HMC algorithm to build a Markov chain of configurations following ?̃(q̃) = 4−(̃ [ q̃] ,

{q̃1, q̃2, q̃3, . . . , q̃# } ∼ 4−(̃ [ q̃] .

3. Apply the inverse transformation 5 −1 to every configuration in the Markov chain to undo the
variable transformation. This way we obtain a Markov chain of configurations following the
target probability distribution ?(q) = 4−( [q] ,

{ 5 −1(q̃1), 5 −1(q̃2), 5 −1(q̃3), . . . , 5 −1(q̃# )} = {q1, q2, q3, . . . , q# } ∼ 4−( [q] .

The important point is that the acceptance of this algorithm does not depend on the transformation
5 that we are doing: it only depends on how well you integrate the HMC equations of motion. This
means that the algorithm will work, no matter how well one trains the network 5 .

Lüscher proposed this algorithm using the Wilson flow as an approximate trivializing map [2],
but it was not good enough to improve the scaling of autocorrelation times towards the continuum
in a CP#−1 theory with topology [4]. The hope is that normalizing flows can play a better role as
approximate trivializing maps; indeed, this idea has already been tested [5, 6], but we want to focus
on the scaling of cheap training setups.

2.2 The model

As in [1, 3], we worked with a q4 theory with a massive scalar field in 2 dimensions,

([q] =
∑
G

−V
2∑̀
=1
qG+`qG + q2

G + _(q2
G − 1)2

 . (7)

Among its features, it has a Z2 symmetry, since the action is invariant under a sign flip of the scalar
field, q → −q; the probability density of the model has two modes, which correspond to positive
and negative magnetization " = 1

+

∑
G qG; and it has a non-trivial correlation length b, yielding

autocorrelations when building the Markov chain of configurations.
We will use these autocorrelations to benchmark our new algorithm against HMC, since the

autocorrelation times of HMC are expected to scale as gint ∝ b2. Also, this model does not have
topology, as opposed to QCD, so we will not suffer from topology freezing.

2.3 Keeping training costs low

Our intention is to keep training costs as low as possible so that we can say that the total
computational cost is essentially given by the cost of producing the Markov chain of configurations,

total cost ≈ configuration production cost (8)

For this to happen it is helpful to consider the information we know about the model:

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
0
1

Learning Trivializing Flows David Albandea

Figure 3: (Left) History of the KL divergence during the training from independent Gaussians to a theory
with parameters V = 0.641, _ = 0.5, lattice size ! = 18 and b = !/4. (Right) History of the magnetization
for a simulation with HMC (blue) and trivializing flows (orange).

• The action has translational symmetry, so there should be no difference between the transfor-
mation of the field at G and the transformation at any other point G ′. This indicates that one
should use convolutional neural networks (CNN) instead of fully connected networks, so that
the same transformation kernel is applied at every point.

• The relevant physics is contained within the correlation length b of the system, so the
transformation of qG should not depend on qG′ if |G − G ′ | � b. This indicates that one should
make the footprint of the network as small as possible according to the correlation length b.

With this in mind we studied very simple network architectures with only one affine coupling layer
and no hidden layers. The affine transformation is defined as

qG → 4B (q)qG + C (q), (9)

where B(q) and C (q) are CNNs with kernel size : , which can be varied to control the footprint of
the transformation. For the simplest case of : = 3 and a pair of checkerboard-masked affine layers
[1], the transformation would only couple next-to-nearest neighbors and the neural network would
have only 37 parameters1.

With such a simple network the training cost is negligible with respect to the HMC simulation,
and one could compare both algorithms just by studying the scaling of the autocorrelation time gint
towards the continuum.

3. Results

3.1 Reduction of gint with minimal network architecture

A first thing to check is if a network with only 37 parameters can learn something. In Fig.3
(left) we show the evolution of the KL divergence for the training of a network from independent

1A CNN with 1 layer has :2 parameters. The transformation in Eq.(9) with #; pairs of checkerboard-masked affine
layers has 2 × #; different CNNs, and therefore 2 × #; × :2 parameters. We also add a global rescaling parameter as a
final layer of our network, so our models have #? = 2 × #; × :2 + 1 parameters.
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! Acc. at ! Acc. at 2!
3 0.3 0.2
4 0.04 0.001
5 0.002 0.00003
6 0.002 0.000007
7 0.0001 < 10−7

8 0.0001 -
9 0.00007 -

10 0.00004 -

Table 1: Metropolis acceptances
at lattice sizes ! and 2! of net-
works trained at lattice size !.

Figure 4: Autocorrelation time of the magnetization at lattice
size 2! using trivializing flows. In circles, the networks used
were trained at lattice size 2!; in triangles, they were trained at
! and used at 2!.

Gaussians to a theory with parameters V = 0.641, _ = 0.5, lattice size ! = 18 and b = !/4. We see
that �KL saturates fast, and this is because the network is very simple: this is the best thing one can
do with it, no matter how much longer is trained.

Having trained the network, one can run a simulation with the two algorithms: one with
plain HMC on the action ((q) —denoted as HMC from now on— and another with HMC on
the transformed action (̃(q̃) —denoted as trivializing flow. The Monte Carlo history of the
magnetization for both algorithms is shown in Fig.3 (right), and their respective autocorrelation
times are

gflow = 74.4(3), gHMC = 100.4(2). (10)

Since the trivializing flows reduced the autocorrelation time of HMC, this indicates that a simple
network can indeed learn something.

3.2 Infinite volume limit

Another thing to note is that CNNs allow to take a network trained at a lattice size ! and reuse
it for a bigger lattice size ! ′ > !. In Tab.1 we trained a different network for every value of !
and checked the Metropolis acceptance that they would have using Metropolis reweighting directly,
as in [1, 3]. Then, we reused the network —without further retraining— for a lattice size 2! and
checked again their Metropolis acceptance.

One can note that the acceptances are low, meaning that the output distribution ?̃ 5 of our
network is not a good approximation of the target distribution ?, which was expected because the
networks are very simple; and that reusing the network for a larger lattices decreases the acceptance
a lot, which is also expected because the action is an extensive quantity and we are just doing
reweighting for a bigger volume.

However, none of this matters if the network is used as a trivializing flow. We can see this in
Fig.4, where we show the autocorrelation time of the magnetization versus different lattice sizes;
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Figure 5: (Left) Scaling of the autocorrelation time of the magnetization towards the continuum for HMC
(filled, blue circles) and trivializing flows with kernel sizes : = 3, 5, 7 (open circles, triangles and hexagons).
(Right) Scaling of the ratio of autocorrelation times of the magnetization of HMC with respect to trivializing
flows.

whether you train directly at a lattice size 2! or you train at ! and reuse it for 2!, you get the same
autocorrelation times. This indicates that the training should be done at a lattice size similar to
the correlation length of the system, ! ∼ b, where the physical information is contained, to reduce
training costs.

3.3 Computational cost scaling

3.3.1 The setup

Finally, we study how the computational cost of the machine-learned trivializing flow scales
towards the continuum, comparing it with the costs of HMC. The theory parameters used are in the
table below, where V was tuned to fix the physical size of the lattice to b = !/4.

! 6 8 10 12 14 16 18 20 40 80
V 0.537 0.576 0.601 0.616 0.626 0.634 0.641 0.645 0.667 0.677
_ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

A few things are worth noting:

• For each of the columns we train a different network from independent Gaussians to the target
theory.

• We always used simple network architectures with one coupling layer and no hidden layers,
and we trained them until saturation of the KL divergence. This saturation happens very fast
and the training costs are negligiblewith respect to the cost of the production of configurations.
Thereforewe only need to compare the scaling of the autocorrelation times of both algorithms.

• The integration step for the molecular dynamics evolution is tuned so that the Metropolis–
Hastings acceptance of HMC and the trivializing flows is approximately 90%.
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Figure 6: (Left) Scaling of the autocorrelation time of the magnetization with : ∼ b. (Right) Scaling of the
autocorrelation time of the flowed one-point susceptibility with : ∼ b. The fits correspond to the assumption
gint ∝ bI .

3.3.2 Scaling with fixed architecture

In Fig.5 (left) we compare the autocorrelation times of the magnetization from simulations
with both algorithms: in blue circles we have the autocorrelations of HMC, and the rest of points
are from trivializing flow simulations with kernel sizes : = 3, 5, 7.

First, we see that all autocorrelations from trivializing flows are better than the ones of HMC.
Also, for a fixed lattice size !, increasing the kernel size of the network decreases the autocorrelation,
but it does not change the scaling of HMC.

The latter can be seen better if we plot the ratio gHMC/gflow, as we do in Fig.5 (right): as we go
to the continuum the ratio tends to a constant, indicating that the scaling of both algorithms is the
same for a fixed network architecture.

3.3.3 Scaling increasing the kernel size

The correlation length b increases in lattice units when taking the continuum limit, so one
should also scale the kernel size of our transformations so that the transformation acts on the same
physical region, : ∼ b. When one chooses the optimum kernel size : of the CNNs for each
lattice size, one gets the results displayed in Fig.6 (left), where now the gap between HMC and the
trivializing flow algorithm seems to increase towards the continuum.

Assuming that the autocorrelation length scales as g ∝ bI we can fit our results and compare
the exponent of the two algorithms, obtaining

I",HMC = 2.20(4), I",flow = 1.97(7). (11)

Therefore, scaling the kernel size of the CNNs leads to a slight improvement in the autocorrelation
scaling of the magnetization " = 1/+ ∑

G qG , which is a local operator. In Fig.6 (right) we plot
instead the one-point susceptibility jC = 1

+

∑
G q

2
C ,G measured on configurations flowed up to flow

time C with a smearing radius ' ∼ b. Assuming the same scaling we again find a slight improvement
with respect to HMC:

IjC ,HMC = 2.20(2), IjC ,flow = 1.92(4). (12)
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4. Conclusions and outlook

We have shown that, even working with very simple architectures, using neural networks as
trivializing flows can improve the autocorrelation times of HMC, although the scaling is the same
as HMC for a fixed network architecture.

Also, the networks trained at a small lattice size can be reused for larger volumes without
further training. Focusing on topology freezing, this could be useful in QCD: one could train at the
size of ΛQCD for large values of the quark masses and then reuse the network for larger volumes
and small masses, thus reducing training costs.

Finally, scaling the kernel size of the networks slightly improves the scaling of autocorrelations.
An interesting question would then be if machine-learned trivializing flows could improve a much
worse kind of continuum scaling, such as the one related to topological freezing in theories with
topology.
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