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Stochastic normalizing flows are a class of deep generative models that combine normalizing
flows with Monte Carlo updates and can be used in lattice field theory to sample from Boltzmann
distributions. In this proceeding, we outline the construction of these hybrid algorithms, pointing
out that the theoretical background can be related to Jarzynski’s equality, a non-equilibrium
statistical mechanics theorem that has been successfully used to compute free energy in lattice
field theory. We conclude with examples of applications to the two-dimensional 𝜙4 field theory.
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1. Introduction

Following ref. [1], in this proceeding, we describe how to combine normalizing flows [2] with
Monte Carlo updates in a new class of generative models called stochastic normalizing flows [3]
which can be easily described in a framework inspired by non-equilibrium statistical mechanics.
Normalizing flows are a class of deep generative models used to efficiently evaluate approximations
of statistical distributions by mapping them to suitable distributions. In lattice field theory, normal-
izing flows can sample uncorrelated configurations from Boltzmann distributions [4] and a direct
application is to use them to compute physically-interesting thermodynamic observables [5]. Thus,
this class of models provides a new, promising route to studying quantum field theories on lattice
[4–15]. Furthermore, stochastic normalizing flows are created by combining stochastic updates
and normalizing flow layers and share the same theoretical background that underlies Monte Carlo
simulations based on Jarzynski’s equality [16], a method that found successful application in lattice
field theory [17–19].

2. Stochastic normalizing flows

In this section, before introducing stochastic normalizing flows [3], we briefly summarize the
building blocks of these hybrid algorithms: normalizing flows [2] and out-of-equilibrium Monte
Carlo simulations based on Jarzynski’s equality [16]. A normalizing flow is a function 𝑓 : R𝑑 → R𝑑 ,
that expresses a sequence of invertible and differentiable transformations interpolating between a
prior distribution 𝑞0(𝜙0), 𝜙0 ∈ R𝑑 and the target distribution 𝑝(𝜙) = exp(−𝑆[𝜙])/𝑍, 𝜙 ∈ R𝑑 .
Normalizing flows can be implemented using neural networks by composing 𝑁 layers labeled by
a natural number 0 ≤ 𝑛 ≤ 𝑁 . Using the change of variable formula it is possible to compute
the density of the generated samples: 𝑞(𝑔(𝜙0)) = 𝑞0(𝜙0) | det 𝐽𝑔 (𝜙0) |−1, where 𝐽𝑔 is the Jacobian
matrix associated with the map 𝑔 = 𝑓 −1. Therefore, for practical implementation, 𝑔 must have
a tractable determinant of the Jacobian. Normalizing flows can be trained so that the "learned"
distribution 𝑞 well approximates the target 𝑝. The training is done by minimizing the Kullback-
Leibler divergence: 𝐷𝐾𝐿 (𝑞 | |𝑝) =

∫
𝑑𝜙[ln 𝑞(𝜙)−ln 𝑝(𝜙)] which is a measure of similarity between

the 𝑞 and 𝑝. After training, the partition function of the target 𝑝 can be computed using a reweighting
procedure, also called importance sampling in the machine learning field [5]:

𝑍

𝑍0
=

∫
𝑑𝜙𝑞(𝜙)𝑤̃(𝜙) = ⟨𝑤̃(𝜙)⟩𝜙∼𝑞 (1)

where we introduce the weight:

𝑤̃(𝜙0) = exp
(
−
{
𝑆[𝑔(𝜙0)] − 𝑆0 [𝜙0] −𝑄𝑔

})
(2)

and 𝑞0(𝜙0) = exp(−𝑆0 [𝜙0])/𝑍0. The form of 𝑄𝑔 =
∑𝑁−1
𝑛=0 ln | det 𝐽𝑛 (𝜙𝑛) | depends on the network

architectures chosen to implement the layers 𝑔𝑛. Normalizing flow layers can be combined with
Monte Carlo methods to obtain hybrids frameworks, following ref. [1], we compare normalizing
flows with the theoretical background of Jarzynski’s equality[16]: a non-equilibrium statistical
mechanics theorem successfully applied for free energy calculations in Monte Carlo simulations of
lattice gauge theories [17–19]. Jarzynski’s equality states that equilibrium partition functions ratios
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can be calculated as an exponential average over non-equilibrium processes of the dimensionless
work 𝑤 done on the system:

𝑍𝜂 𝑓 𝑖𝑛

𝑍𝜂𝑖𝑛
= ⟨exp(−𝑤(𝜙0, 𝜙1, ..., 𝜙𝑁 ))⟩ 𝑓 (3)

where we introduced a protocol 𝜂(𝑡) that drives out of equilibrium the states 𝜂𝑖𝑛 = 𝜂(𝑡𝑖𝑛) to
𝜂 𝑓 𝑖𝑛 = 𝜂(𝑡 𝑓 𝑖𝑛) and can be a set of couplings appearing in the action 𝑆. The average of the equation
(3) is taken over all possible trajectories connecting, in the phase space, 𝜂𝑖𝑛 to 𝜂 𝑓 𝑖𝑛. Note that only
the initial configurations must be in the thermodynamic equilibrium; the system is forced out of
equilibrium and is never allowed to relax. These stochastic evolutions1 can be implemented using
Monte Carlo updates by discretizing the time 𝑡 and computing the work as:

𝑤(𝜙0, 𝜙1, ..., 𝜙𝑁 ) = 𝑆𝜂𝑁 [𝜙𝑁 ] − 𝑆𝜂0 [𝜙0] −𝑄ℎ (𝜙0, 𝜙1, ...., 𝜙𝑁 ) (4)

where 𝜙 are the degrees of freedom of the system and 𝜂𝑛 = 𝜂(𝑡𝑛) and 𝑄ℎ is the heat exchanged with
the environment during the processes. Given a discrete protocol 𝜂, it is possible to define a sequence
of Boltzmann distributions, at the 𝑛-th step: 𝜋𝜂𝑛 [𝜙] = exp(−𝑆𝜂𝑛 [𝜙])/𝑍𝜂𝑛 , the "prior" 𝜙0 is sampled
from the distribution 𝜋𝜂0 = 𝑒−𝑆𝜂0 [𝜙0 ]/𝑍𝜂0 and the heat can be computed as: 𝑄ℎ (𝜙0, 𝜙1, ..., 𝜙𝑁 ) =∑𝑁−1
𝑛=0 {𝑆𝜂𝑛+1 [𝜙𝑛+1] − 𝑆𝜂𝑛+1 [𝜙𝑛]}. Note that eq. (3) doesn’t depend on protocol 𝜂(𝑡). However,

there is a limited number of trajectories in the Monte Carlo implementation; hence, the protocol
choices impact the overall efficiency of the method. Finally, stochastic normalizing flows can be
constructed interleaving normalizing flow layers with stochastic evolution updates: in this hybrid
framework partition functions can be calculated using Jarzynki’s equality (3) with generalized work
𝑤(𝜙0, 𝜙1, ..., 𝜙𝑁 ) = 𝑆𝜂𝑁 [𝜙𝑁 ] − 𝑆𝜂0 [𝜙0] −𝑄(𝜙0, 𝜙1, ...𝜙𝑁 ) where the "heat" 𝑄 is computed as the
sum of𝑄𝑔 and𝑄ℎ. Moreover, generic observables O at 𝜂 = 𝜂 𝑓 𝑖𝑛 can be computed using Jarzynski’s
equality:

⟨O⟩𝜂=𝜂 𝑓 𝑖𝑛
=

⟨O(𝜙𝑁 ) exp(−𝑤(𝜙0, 𝜙1, ..., 𝜙𝑁 ))⟩ 𝑓
⟨exp(−𝑤(𝜙0, 𝜙1, ..., 𝜙𝑁 ))⟩ 𝑓

. (5)

3. Application to scalar field theory

In this section, we show some results in the two-dimensional 𝜙4 interacting field theory, more
extended studies can be found in [1]. The theory is regularized on a lattice Λ of size 𝐿𝑡 × 𝐿𝑠, with
lattice spacing 𝑎 and periodic boundary conditions along both dimensions. We defined 𝑁𝑡 = 𝐿𝑡/𝑎
and 𝑁𝑠 = 𝐿𝑠/𝑎 as the number of sites in the temporal and spatial directions. The Euclidean action
is:

𝑆(𝜙) =
∑︁
𝑥∈Λ

−2𝜅
∑︁
𝜇=0,1

𝜙(𝑥)𝜙(𝑥 + 𝜇̂) + (1 − 2𝜆)𝜙(𝑥)2 + 𝜆𝜙(𝑥)4. (6)

For each algorithm: normalizing flows (NFs), stochastic evolutions (SEs) and stochastic normalizing
flows (SNFs), we sample the prior from a normal distribution with 𝜇 = 0 and 𝜎 = 0.5, thus we
recover (6) with 𝜅 = 0 and 𝜆 = 0. This choice simplifies the protocol needed for SEs and SNFs. To
compare the performances, we use the effective sample sizes (ESS):

𝐸𝑆𝑆 =
⟨𝑤̃⟩2

𝑓

⟨𝑤̃2⟩ 𝑓
(7)

1An equivalent algorithm is the annealed importance sampling [20]
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Figure 1: ESS as a function of 𝑛𝑠𝑏 for different flows. 16 × 8 lattices at 𝜅 = 0.2, 𝜆 = 0.022. The filled
𝑛𝑎𝑏 = 0 point represents SEs, while the empty points represent SNFs. In the limit 𝑛𝑠𝑏 = 0 and 𝑛𝑎𝑏 ≠ 0 NFs
are recovered.

which is defined in the interval [0, 1] and is equal to 1 when the generated distribution 𝑞 is equal to
the target.

For normalizing flow layers, we implement the RealNVP [21] affine coupling layers and enforce
Z2 equivariance as [10]. The networks used are minimal convolutional neural networks with just
one layer, two feature maps, and 3 × 3 kernel. Since each coupling layer transforms only half of
the lattice sites (we use a "checkerboard" even-odd, partitioning), we define one affine block as
the sum of two affine layers and introduce 𝑛𝑎𝑏 as the number of deterministic, affine blocks. For
SEs, we fix a linear protocol 𝜂 interpolating between the initial and final action parameters, the 𝑛-th
"layer" is defined by the protocol parameters 𝜂𝑛 = 𝜂(𝑡𝑛) that are used to update the configurations
with the action 𝑆𝜂𝑛 . We implemented local heatbath updates and defined the number of stochastic
blocks as 𝑛𝑠𝑏. SNFs are built by alternating affine blocks with stochastic updates. The models
(NFs and SNFs) are trained by minimizing the loss function −⟨ln 𝑤̃⟩ 𝑓 which is the Kullback-Leibler
divergence minus ln 𝑍/𝑍0. To update the model parameters, we use ADAM [22] with 104 steps,
set the initial learning rate to 0.0005, and use ReduceLROnPlateau scheduler with patience of 500
steps. The software used is written using Pytorch [23]. All the numerical experiments have been
performed on an NVIDIA Volta V100 GPU with 16 GB.

In fig. (1), we fixed the volume of the lattices to 16 × 8 and set the couplings to 𝜅 = 0.2 and
𝜆 = 0.022, which lie in the symmetric phase of the theory. In fig. (2) we fixed 𝑛𝑎𝑏 = 24 and 𝑁𝑡 = 8
and we vary 𝑛𝑠𝑏. Both fig. (1) and (2) show that SNFs can reach high ESS using a small number
of 𝑛𝑠𝑏; this is highly relevant because the number of stochastic updates is drastically reduced. We
also observed a performance peak when 𝑛𝑠𝑏 = 𝑛𝑎𝑏, which shows that the layer produced by one
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Figure 2: ESS as function of 𝑛𝑠𝑏 and 𝑁𝑠 for SEs and SNFs with 𝑛𝑎𝑏 = 24. Lattices of size 𝑁𝑡 = 8 at
𝜅 = 0.2, 𝜆 = 0.022.

deterministic and one stochastic block is the most expressive ingredient of SNFs. In fig. (3), we
target different action parameters finding the same trends as the other study, namely the saturation
of the ESS when 𝑛𝑎𝑏 > 𝑛𝑠𝑏. We remark that all the tests are performed in the symmetric phase; a
different type of SNFs may be required to reproduce our results in the unbroken symmetry phase. In
fig. (4), we compare Gaussian and identity initializations for flow parameters; for all the measures in
this proceeding, we initialized the parameters of flows with random Gaussian values. Furthermore,
following ref. [24], we found that identity initialization for NF layers can speed training; this choice
reduces the untrained SNFs to SEs, offering suitable starting points for training procedures.

4. Conclusion

In this proceeding, based on [1], we have discussed the relationship between normalizing
flows and non-equilibrium Monte Carlo simulations related to Jarzynski’s equality (stochastic
evolutions): both, providing deterministic or stochastic maps, give an effective way to compute
partition functions and sample target distributions. Moreover, stochastic normalizing flows can be
constructed by combining normalizing flows and stochastic evolutions; in this hybrid framework, the
non-equilibrium protocol helps deterministic blocks to find suitable paths, while normalizing flows
provide highly expressive maps. Since Monte Carlo updates are ergodic, stochasticity ameliorates
mode-collapsing of normalizing flows. Despite the potential of these novel algorithms, the accuracy
of the measures depends on a wide range of largely undiscovered possibilities; further research is
required, and out-of-equilibrium thermodynamics can be exploited as a theoretical tool to drive the
investigation of novel algorithms.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
0
5

Stochastic normalizing flows for lattice field theory E. Cellini

Figure 3: ESS as a function of 𝑛𝑠𝑏 SNFs with 𝑛𝑠𝑏 = 24 (left panel) and 𝑛𝑠𝑏 = 𝑛𝑎𝑏 (right panel). Lattices
of size 16 × 8 and different values of the target parameters. To the best of our knowledge, the green target
parameters should lie very close to the critical point.

Stochastic evolution has been successfully applied to high-precision lattice gauge theory studies
[17–19]. Hence, natural developments of our contribution will examine the extension of these works
using stochastic normalizing flows. We showed it is possible to use stochasticity to improve simple
normalizing flows. Therefore, other improvements of this work include the study of the stochastic
counterparts of state-of-art flow-based samplers like continuous normalizing flows [14, 15] and the
application to the lattice field theory of extensions of stochastic normalizing flows [24].

Acknowledgments

The numerical simulations were run on machines of the Consorzio Interuniversitario per il
Calcolo Automatico dell’Italia Nord Orientale (CINECA). We acknowledge support from the SFT
Scientific Initiative of INFN. This work was partially supported by the Simons Foundation grant
994300 (Simons Collaboration on Confinement and QCD Strings). Part of the numerical functions
used in the present work are based on ref. [25].

References

[1] M. Caselle, E. Cellini, A. Nada and M. Panero, Stochastic normalizing flows as
non-equilibrium transformations, JHEP 07 (2022) 015 [2201.08862].

[2] D. Rezende and S. Mohamed, Variational inference with normalizing flows, in International
conference on machine learning, pp. 1530–1538, PMLR, 2015.

[3] H. Wu, J. Köhler and F. Noé, Stochastic normalizing flows, Advances in Neural Information
Processing Systems 33 (2020) 5933.

6

https://doi.org/10.1007/JHEP07(2022)015
https://arxiv.org/abs/2201.08862


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
0
5

Stochastic normalizing flows for lattice field theory E. Cellini

0 25 50 75 100 125 150 175 200
Era

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
S

S

gaussian initialization

identity initialization

Figure 4: Learning curve of ESS for different SNFs initializations. One era corresponds to the average of
10 optimizer updates. 16 × 8 lattices at 𝜅 = 0.2, 𝜆 = 0.022.

[4] M.S. Albergo, G. Kanwar and P.E. Shanahan, Flow-based generative models for markov
chain monte carlo in lattice field theory, Phys. Rev. D 100 (2019) 034515.

[5] K.A. Nicoli, C.J. Anders, L. Funcke, T. Hartung, K. Jansen, P. Kessel et al., Estimation of
thermodynamic observables in lattice field theories with deep generative models, Phys. Rev.
Lett. 126 (2021) 032001.

[6] G. Kanwar, M.S. Albergo, D. Boyda, K. Cranmer, D.C. Hackett, S. Racaniere et al.,
Equivariant flow-based sampling for lattice gauge theory, Physical Review Letters 125
(2020) 121601.

[7] D. Boyda, G. Kanwar, S. Racanière, D.J. Rezende, M.S. Albergo, K. Cranmer et al.,
Sampling using SU(𝑛) gauge equivariant flows, Phys. Rev. D 103 (2021) 074504.

[8] D.C. Hackett, C.-C. Hsieh, M.S. Albergo, D. Boyda, J.-W. Chen, K.-F. Chen et al.,
Flow-based sampling for multimodal distributions in lattice field theory, 2107.00734.

7

https://doi.org/10.1103/PhysRevD.100.034515
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevD.103.074504
https://arxiv.org/abs/2107.00734


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
0
5

Stochastic normalizing flows for lattice field theory E. Cellini

[9] R. Abbott et al., Gauge-equivariant flow models for sampling in lattice field theories with
pseudofermions, 2207.08945.

[10] L. Del Debbio, J. Marsh Rossney and M. Wilson, Efficient modeling of trivializing maps for
lattice 𝜙4 theory using normalizing flows: A first look at scalability, Phys. Rev. D 104 (2021)
094507.

[11] J.M. Pawlowski and J.M. Urban, Flow-based density of states for complex actions,
2203.01243.

[12] J.-L. Wynen, E. Berkowitz, S. Krieg, T. Luu and J. Ostmeyer, Machine learning to alleviate
Hubbard-model sign problems, Phys. Rev. B 103 (2021) 125153 [2006.11221].

[13] J. Finkenrath, Tackling critical slowing down using global correction steps with equivariant
flows: the case of the Schwinger model, 2201.02216.

[14] P. de Haan, C. Rainone, M.C.N. Cheng and R. Bondesan, Scaling Up Machine Learning For
Quantum Field Theory with Equivariant Continuous Flows, 2110.02673.

[15] M. Gerdes, P. de Haan, C. Rainone, R. Bondesan and M.C.N. Cheng, Learning Lattice
Quantum Field Theories with Equivariant Continuous Flows, 2207.00283.

[16] C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78 (1997)
2690.

[17] M. Caselle, G. Costagliola, A. Nada, M. Panero and A. Toniato, Jarzynski’s theorem for
lattice gauge theory, Phys. Rev. D 94 (2016) 034503.

[18] O. Francesconi, M. Panero and D. Preti, Strong coupling from non-equilibrium Monte Carlo
simulations, JHEP 07 (2020) 233 [2003.13734].

[19] M. Caselle, A. Nada and M. Panero, QCD thermodynamics from lattice calculations with
nonequilibrium methods: The SU(3) equation of state, Phys. Rev. D 98 (2018) 054513.

[20] R.M. Neal, Annealed importance sampling, Statistics and computing 11 (2001) 125.

[21] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using Real NVP, 1605.08803.

[22] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 1412.6980.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan et al., Pytorch: An
imperative style, high-performance deep learning library, in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and
R. Garnett, eds., vol. 32, Curran Associates, Inc., 2019.

[24] A.G.D.G. Matthews, M. Arbel, D.J. Rezende and A. Doucet, Continual Repeated Annealed
Flow Transport Monte Carlo, 2201.13117.

[25] M.S. Albergo, D. Boyda, D.C. Hackett, G. Kanwar, K. Cranmer, S. Racanière et al.,
Introduction to Normalizing Flows for Lattice Field Theory, 2101.08176.

8

https://arxiv.org/abs/2207.08945
https://doi.org/10.1103/PhysRevD.104.094507
https://doi.org/10.1103/PhysRevD.104.094507
https://arxiv.org/abs/2203.01243
https://doi.org/10.1103/PhysRevB.103.125153
https://arxiv.org/abs/2006.11221
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2110.02673
https://arxiv.org/abs/2207.00283
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevD.94.034503
https://doi.org/10.1007/JHEP07(2020)233
https://arxiv.org/abs/2003.13734
https://doi.org/10.1103/PhysRevD.98.054513
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2201.13117
https://arxiv.org/abs/2101.08176

	Introduction
	Stochastic normalizing flows
	Application to scalar field theory
	Conclusion

